File size: 12,637 Bytes
e3550fe
18eb2b5
 
 
 
 
 
 
 
 
 
 
 
e3550fe
bf6b1fc
5e21c98
 
 
 
 
 
 
 
 
 
fc452d5
18eb2b5
 
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
 
b0bdad2
18eb2b5
 
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
 
b0bdad2
18eb2b5
 
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
b0bdad2
 
18eb2b5
b0bdad2
 
18eb2b5
b0bdad2
 
18eb2b5
 
b0bdad2
18eb2b5
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
 
b0bdad2
18eb2b5
 
b0bdad2
18eb2b5
 
b0bdad2
18eb2b5
 
b0bdad2
18eb2b5
b0bdad2
 
18eb2b5
b0bdad2
 
18eb2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3550fe
 
bf6b1fc
 
 
 
 
5e21c98
fc452d5
 
 
 
 
bf6b1fc
 
 
 
 
 
17e5bc1
 
 
 
 
 
 
 
 
 
bf6b1fc
5e21c98
 
 
 
bf6b1fc
77629dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e21c98
bf6b1fc
5e21c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6b1fc
 
5e21c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3550fe
fc40971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6b1fc
e3550fe
5e21c98
 
bf6b1fc
e3550fe
bf6b1fc
 
 
 
 
 
 
 
 
 
 
e3550fe
bf6b1fc
e3550fe
bf6b1fc
 
 
 
 
e3550fe
 
bf6b1fc
e3550fe
bf6b1fc
 
 
5e21c98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
- ner
- named-entity-recognition
- span-marker
datasets:
- Babelscape/multinerd
metrics:
- precision
- recall
- f1
pipeline_tag: token-classification
widget:
- text: Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik
    nach Paris.
  example_title: German
- text: Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
    to Paris.
  example_title: English
- text: Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico
    hasta París.
  example_title: Spanish
- text: Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l'ocean
    Atlantique jusqu'à Paris.
  example_title: French
- text: Amelia Earhart ha volato con il suo monomotore Lockheed Vega 5B attraverso
    l'Atlantico fino a Parigi.
  example_title: Italian
- text: Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische
    Oceaan naar Parijs.
  example_title: Dutch
- text: Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega
    5B przez Ocean Atlantycki do Paryża.
  example_title: Polish
- text: Amelia Earhart voou em seu monomotor Lockheed Vega 5B através do Atlântico
    para Paris.
  example_title: Portuguese
- text: Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B
    через Атлантический океан в Париж.
  example_title: Russian
- text: Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til
    Parísar.
  example_title: Icelandic
- text: Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα ​​από
    τον Ατλαντικό Ωκεανό στο Παρίσι.
  example_title: Greek
- text: Amelia Earhartová přeletěla se svým jednomotorovým Lockheed Vega 5B přes Atlantik
    do Paříže.
  example_title: Czech
- text: Amelia Earhart lensi yksimoottorisella Lockheed Vega 5B:llä Atlantin yli Pariisiin.
  example_title: Finnish
- text: Amelia Earhart fløj med sin enmotoriske Lockheed Vega 5B over Atlanten til
    Paris.
  example_title: Danish
- text: Amelia Earhart flög sin enmotoriga Lockheed Vega 5B över Atlanten till Paris.
  example_title: Swedish
- text: Amelia Earhart fløy sin enmotoriske Lockheed Vega 5B over Atlanterhavet til
    Paris.
  example_title: Norwegian
- text: Amelia Earhart și-a zburat cu un singur motor Lockheed Vega 5B peste Atlantic
    până la Paris.
  example_title: Romanian
- text: Amelia Earhart menerbangkan mesin tunggal Lockheed Vega 5B melintasi Atlantik
    ke Paris.
  example_title: Indonesian
- text: Амелія Эрхарт пераляцела на сваім аднаматорным Lockheed Vega 5B праз Атлантыку
    ў Парыж.
  example_title: Belarusian
- text: Амелія Ергарт перелетіла на своєму одномоторному літаку Lockheed Vega 5B через
    Атлантику до Парижа.
  example_title: Ukrainian
- text: Amelia Earhart preletjela je svojim jednomotornim zrakoplovom Lockheed Vega
    5B preko Atlantika do Pariza.
  example_title: Croatian
- text: Amelia Earhart lendas oma ühemootoriga Lockheed Vega 5B üle Atlandi ookeani
    Pariisi .
  example_title: Estonian
base_model: bert-base-multilingual-cased
model-index:
- name: span-marker-bert-base-multilingual-cased-multinerd
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: MultiNERD
      type: Babelscape/multinerd
      split: test
      revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
    metrics:
    - type: f1
      value: 0.927
      name: F1
    - type: precision
      value: 0.9281
      name: Precision
    - type: recall
      value: 0.9259
      name: Recall
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# span-marker-bert-base-multilingual-cased-multinerd

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co./bert-base-multilingual-cased) on an [Babelscape/multinerd](https://huggingface.co./datasets/Babelscape/multinerd) dataset.

Is your data not (always) capitalized correctly? Then consider using the uncased variant of this model instead for better performance: 
[lxyuan/span-marker-bert-base-multilingual-uncased-multinerd](https://huggingface.co./lxyuan/span-marker-bert-base-multilingual-uncased-multinerd).

This model achieves the following results on the evaluation set:
- Loss: 0.0049
- Overall Precision: 0.9242
- Overall Recall: 0.9281
- Overall F1: 0.9261
- Overall Accuracy: 0.9852

Test set results:
- test_loss: 0.005226554349064827,
- test_overall_accuracy: 0.9851129807294873,
- test_overall_f1: 0.9270450073152169,
- test_overall_precision: 0.9281906912835416,
- test_overall_recall: 0.9259021481405626,
- test_runtime: 2690.9722,
- test_samples_per_second: 150.748,
- test_steps_per_second: 4.711


This is a replication of Tom's work. Everything remains unchanged, 
except that we extended the number of training epochs to 3 for a 
slightly longer training duration and set the gradient_accumulation_steps to 2. 
Please refer to the official [model page](https://huggingface.co./tomaarsen/span-marker-mbert-base-multinerd) to review their results and training script

## Results:


| **Language** | **Precision** | **Recall** | **F1**     |
|--------------|---------------|------------|------------|
| **all**      | 92.42         | 92.81      | **92.61**  |
| **de**       | 95.03         | 95.07      | **95.05**  |
| **en**       | 95.00         | 95.40      | **95.20**  |
| **es**       | 92.05         | 91.37      | **91.71**  |
| **fr**       | 92.37         | 91.41      | **91.89**  | 
| **it**       | 91.45         | 93.15      | **92.29**  | 
| **nl**       | 93.85         | 92.98      | **93.41**  |
| **pl**       | 93.13         | 92.66      | **92.89**  |
| **pt**       | 93.60         | 92.50      | **93.05**  |
| **ru**       | 93.25         | 93.32      | **93.29**  | 
| **zh**       | 89.47         | 88.40      | **88.93**  |

- Special thanks to Tom for creating the evaluation script and generating the [results](https://huggingface.co./lxyuan/span-marker-bert-base-multilingual-cased-multinerd/discussions/1).


## Label set

| Class | Description | Examples |
|-------|-------------|----------|
| **PER (person)** | People | Ray Charles, Jessica Alba, Leonardo DiCaprio, Roger Federer, Anna Massey. |
| **ORG (organization)** | Associations, companies, agencies, institutions, nationalities and religious or political groups | University of Edinburgh, San Francisco Giants, Google, Democratic Party. |
| **LOC (location)** | Physical locations (e.g. mountains, bodies of water), geopolitical entities (e.g. cities, states), and facilities (e.g. bridges, buildings, airports). | Rome, Lake Paiku, Chrysler Building, Mount Rushmore, Mississippi River. |
| **ANIM (animal)** | Breeds of dogs, cats and other animals, including their scientific names. | Maine Coon, African Wild Dog, Great White Shark, New Zealand Bellbird. |
| **BIO (biological)** | Genus of fungus, bacteria and protoctists, families of viruses, and other biological entities. | Herpes Simplex Virus, Escherichia Coli, Salmonella, Bacillus Anthracis. |
| **CEL (celestial)** | Planets, stars, asteroids, comets, nebulae, galaxies and other astronomical objects. | Sun, Neptune, Asteroid 187 Lamberta, Proxima Centauri, V838 Monocerotis. |
| **DIS (disease)** | Physical, mental, infectious, non-infectious, deficiency, inherited, degenerative, social and self-inflicted diseases. | Alzheimer’s Disease, Cystic Fibrosis, Dilated Cardiomyopathy, Arthritis. |
| **EVE (event)** | Sport events, battles, wars and other events. | American Civil War, 2003 Wimbledon Championships, Cannes Film Festival. |
| **FOOD (food)** | Foods and drinks. | Carbonara, Sangiovese, Cheddar Beer Fondue, Pizza Margherita. |
| **INST (instrument)** | Technological instruments, mechanical instruments, musical instruments, and other tools. | Spitzer Space Telescope, Commodore 64, Skype, Apple Watch, Fender Stratocaster. |
| **MEDIA (media)** | Titles of films, books, magazines, songs and albums, fictional characters and languages. | Forbes, American Psycho, Kiss Me Once, Twin Peaks, Disney Adventures. |
| **PLANT (plant)** | Types of trees, flowers, and other plants, including their scientific names. | Salix, Quercus Petraea, Douglas Fir, Forsythia, Artemisia Maritima. |
| **MYTH (mythological)** | Mythological and religious entities. | Apollo, Persephone, Aphrodite, Saint Peter, Pope Gregory I, Hercules. |
| **TIME (time)** | Specific and well-defined time intervals, such as eras, historical periods, centuries, years and important days. No months and days of the week. | Renaissance, Middle Ages, Christmas, Great Depression, 17th Century, 2012. |
| **VEHI (vehicle)** | Cars, motorcycles and other vehicles. | Ferrari Testarossa, Suzuki Jimny, Honda CR-X, Boeing 747, Fairey Fulmar. |



## Inference Example

```python
# install span_marker
(env)$ pip install span_marker


from span_marker import SpanMarkerModel

model = SpanMarkerModel.from_pretrained("lxyuan/span-marker-bert-base-multilingual-cased-multinerd")

description = "Singapore is renowned for its hawker centers offering dishes \
like Hainanese chicken rice and laksa, while Malaysia boasts dishes such as \
nasi lemak and rendang, reflecting its rich culinary heritage."

entities = model.predict(description)

entities
>>>
[
  {'span': 'Singapore', 'label': 'LOC', 'score': 0.999988317489624, 'char_start_index': 0, 'char_end_index': 9},
  {'span': 'Hainanese chicken rice', 'label': 'FOOD', 'score': 0.9894770383834839, 'char_start_index': 66, 'char_end_index': 88},
  {'span': 'laksa', 'label': 'FOOD', 'score': 0.9224908947944641, 'char_start_index': 93, 'char_end_index': 98},
  {'span': 'Malaysia', 'label': 'LOC', 'score': 0.9999839067459106, 'char_start_index': 106, 'char_end_index': 114}]

# missed: nasi lemak as FOOD
# missed: rendang as FOOD
# :(
```

#### Quick test on Chinese
```python
from span_marker import SpanMarkerModel

model = SpanMarkerModel.from_pretrained("lxyuan/span-marker-bert-base-multilingual-cased-multinerd")

# translate to chinese
description = "Singapore is renowned for its hawker centers offering dishes \
like Hainanese chicken rice and laksa, while Malaysia boasts dishes such as \
nasi lemak and rendang, reflecting its rich culinary heritage."

zh_description = "新加坡因其小贩中心提供海南鸡饭和叻沙等菜肴而闻名, 而马来西亚则拥有椰浆饭和仁当等菜肴,反映了其丰富的烹饪传统."

entities = model.predict(zh_description)

entities
>>>
[
  {'span': '新加坡', 'label': 'LOC', 'score': 0.9282007813453674, 'char_start_index': 0, 'char_end_index': 3},
  {'span': '马来西亚', 'label': 'LOC', 'score': 0.7439665794372559, 'char_start_index': 27, 'char_end_index': 31}]

# It only managed to capture two countries: Singapore and Malaysia.
# All other entities were missed out.
```


## Training procedure

One can reproduce the result running this [script](https://huggingface.co./tomaarsen/span-marker-mbert-base-multinerd/blob/main/train.py)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0129        | 1.0   | 50436  | 0.0042          | 0.9226            | 0.9169         | 0.9197     | 0.9837           |
| 0.0027        | 2.0   | 100873 | 0.0043          | 0.9255            | 0.9206         | 0.9230     | 0.9846           |
| 0.0015        | 3.0   | 151308 | 0.0049          | 0.9242            | 0.9281         | 0.9261     | 0.9852           |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3