|
"""Attention layers.""" |
|
import math |
|
import warnings |
|
from typing import Optional |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from torch import nn |
|
from .norm import LPLayerNorm |
|
|
|
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): |
|
if original_is_causal and num_query_tokens != num_key_tokens: |
|
if num_query_tokens != 1: |
|
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') |
|
else: |
|
return False |
|
return original_is_causal |
|
|
|
def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False): |
|
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) |
|
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads) |
|
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads) |
|
min_val = torch.finfo(q.dtype).min |
|
(b, _, s_q, d) = q.shape |
|
s_k = k.size(-1) |
|
if softmax_scale is None: |
|
softmax_scale = 1 / math.sqrt(d) |
|
attn_weight = q.matmul(k) * softmax_scale |
|
if attn_bias is not None: |
|
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): |
|
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') |
|
attn_weight = attn_weight + attn_bias |
|
if key_padding_mask is not None: |
|
if attn_bias is not None: |
|
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') |
|
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) |
|
if is_causal: |
|
s = max(s_q, s_k) |
|
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) |
|
causal_mask = causal_mask.tril() |
|
causal_mask = causal_mask.to(torch.bool) |
|
causal_mask = ~causal_mask |
|
causal_mask = causal_mask[-s_q:, -s_k:] |
|
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
if dropout_p: |
|
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) |
|
out = attn_weight.matmul(v) |
|
out = rearrange(out, 'b h s d -> b s (h d)') |
|
if needs_weights: |
|
return (out, attn_weight) |
|
return (out, None) |
|
|
|
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): |
|
for tensor in tensors: |
|
if tensor.dtype not in valid_dtypes: |
|
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') |
|
if not tensor.is_cuda: |
|
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
"""Multi-head self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None): |
|
super().__init__() |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) |
|
self.attn_dropout_p = attn_pdrop |
|
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) |
|
fuse_splits = (d_model, 2 * d_model) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(self.d_model, device=device) |
|
self.k_ln = layernorm_class(self.d_model, device=device) |
|
if self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available(): |
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): |
|
qkv = self.Wqkv(x) |
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
(query, key, value) = qkv.chunk(3, dim=2) |
|
key_padding_mask = attention_mask |
|
if self.qk_ln: |
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
past_key_value = (key, value) |
|
if attn_bias is not None: |
|
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):] |
|
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights) |
|
return (self.out_proj(context), attn_weights, past_key_value) |
|
|
|
class MultiQueryAttention(nn.Module): |
|
"""Multi-Query self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None): |
|
super().__init__() |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.head_dim = d_model // n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.head_dim) |
|
self.attn_dropout_p = attn_pdrop |
|
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) |
|
fuse_splits = (d_model, d_model + self.head_dim) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(d_model, device=device) |
|
self.k_ln = layernorm_class(self.head_dim, device=device) |
|
if self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available(): |
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): |
|
qkv = self.Wqkv(x) |
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2) |
|
key_padding_mask = attention_mask |
|
if self.qk_ln: |
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
past_key_value = (key, value) |
|
if attn_bias is not None: |
|
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):] |
|
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True) |
|
return (self.out_proj(context), attn_weights, past_key_value) |
|
|
|
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): |
|
if attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
if (prefix_lm or not causal) or use_sequence_id: |
|
return (1, n_heads, seq_len, seq_len) |
|
return (1, n_heads, 1, seq_len) |
|
elif prefix_lm or use_sequence_id: |
|
return (1, 1, seq_len, seq_len) |
|
return None |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8): |
|
if attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
(device, dtype) = (attn_bias.device, attn_bias.dtype) |
|
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) |
|
return attn_bias |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def gen_slopes(n_heads, alibi_bias_max=8, device=None): |
|
_n_heads = 2 ** math.ceil(math.log2(n_heads)) |
|
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) |
|
m = m.mul(alibi_bias_max / _n_heads) |
|
slopes = 1.0 / torch.pow(2, m) |
|
if _n_heads != n_heads: |
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] |
|
return slopes.view(1, n_heads, 1, 1) |
|
|
|
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None): |
|
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) |
|
if full: |
|
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) |
|
alibi_bias = alibi_bias.abs().mul(-1) |
|
slopes = gen_slopes(n_heads, alibi_bias_max, device=device) |
|
alibi_bias = alibi_bias * slopes |
|
return alibi_bias.to(dtype=dtype) |
|
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention} |