Upload tokenizer
Browse files- README.md +153 -154
- added_tokens.json +1 -0
- tokenizer.json +10 -0
- tokenizer_config.json +8 -0
README.md
CHANGED
@@ -1,499 +1,498 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
datasets:
|
4 |
- lmms-lab/LLaVA-OneVision-Data
|
5 |
language:
|
6 |
- en
|
7 |
- zh
|
|
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
-
library_name: transformers
|
11 |
tags:
|
12 |
- multimodal
|
13 |
-
|
14 |
model-index:
|
15 |
- name: llava-onevision-qwen-0.5b-ov
|
16 |
results:
|
17 |
- task:
|
18 |
type: multimodal
|
19 |
dataset:
|
20 |
-
type: ai2d
|
21 |
name: AI2D
|
|
|
22 |
metrics:
|
23 |
-
-
|
24 |
-
type: accuracy
|
25 |
value: 57.1
|
|
|
26 |
verified: true
|
27 |
- task:
|
28 |
type: multimodal
|
29 |
dataset:
|
30 |
-
type: chartqa
|
31 |
name: ChartQA
|
|
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: accuracy
|
35 |
value: 61.4
|
|
|
36 |
verified: true
|
37 |
- task:
|
38 |
type: multimodal
|
39 |
dataset:
|
40 |
-
type: docvqa
|
41 |
name: DocVQA
|
|
|
42 |
metrics:
|
43 |
-
-
|
44 |
-
type: accuracy
|
45 |
value: 73.7
|
|
|
46 |
verified: true
|
47 |
- task:
|
48 |
type: multimodal
|
49 |
dataset:
|
50 |
-
type: infovqa
|
51 |
name: InfoVQA
|
|
|
52 |
metrics:
|
53 |
-
-
|
54 |
-
type: accuracy
|
55 |
value: 46.3
|
|
|
56 |
verified: true
|
57 |
- task:
|
58 |
type: multimodal
|
59 |
dataset:
|
60 |
-
type: mathverse
|
61 |
name: MathVerse
|
|
|
62 |
metrics:
|
63 |
-
-
|
64 |
-
type: accuracy
|
65 |
value: 17.9
|
|
|
66 |
verified: true
|
67 |
- task:
|
68 |
type: multimodal
|
69 |
dataset:
|
70 |
-
type: mathvista
|
71 |
name: MathVista
|
|
|
72 |
metrics:
|
73 |
-
-
|
74 |
-
type: accuracy
|
75 |
value: 34.8
|
|
|
76 |
verified: true
|
77 |
- task:
|
78 |
type: multimodal
|
79 |
dataset:
|
80 |
-
type: mmbench
|
81 |
name: MMBench
|
|
|
82 |
metrics:
|
83 |
-
-
|
84 |
-
type: accuracy
|
85 |
value: 52.1
|
|
|
86 |
verified: true
|
87 |
- task:
|
88 |
type: multimodal
|
89 |
dataset:
|
90 |
-
type: mme-perception
|
91 |
name: MME-Perception
|
|
|
92 |
metrics:
|
93 |
-
-
|
94 |
-
type: score
|
95 |
value: 1238
|
|
|
96 |
verified: true
|
97 |
- task:
|
98 |
type: multimodal
|
99 |
dataset:
|
100 |
-
type: mme-cognition
|
101 |
name: MME-Cognition
|
|
|
102 |
metrics:
|
103 |
-
-
|
104 |
-
type: score
|
105 |
value: 240
|
106 |
-
|
|
|
107 |
- task:
|
108 |
type: multimodal
|
109 |
dataset:
|
110 |
-
type: mmmu
|
111 |
name: MMMU
|
|
|
112 |
metrics:
|
113 |
-
-
|
114 |
-
type: accuracy
|
115 |
value: 31.4
|
|
|
116 |
verified: true
|
117 |
- task:
|
118 |
type: multimodal
|
119 |
dataset:
|
120 |
-
type: mmvet
|
121 |
name: MMVet
|
|
|
122 |
metrics:
|
123 |
-
-
|
124 |
-
type: accuracy
|
125 |
value: 29.1
|
|
|
126 |
verified: true
|
127 |
- task:
|
128 |
type: multimodal
|
129 |
dataset:
|
130 |
-
type: mmstar
|
131 |
name: MMStar
|
|
|
132 |
metrics:
|
133 |
-
-
|
134 |
-
type: accuracy
|
135 |
value: 37.5
|
|
|
136 |
verified: true
|
137 |
- task:
|
138 |
type: multimodal
|
139 |
dataset:
|
140 |
-
type: seed-bench
|
141 |
name: Seed-Bench
|
|
|
142 |
metrics:
|
143 |
-
-
|
144 |
-
type: accuracy
|
145 |
value: 65.5
|
|
|
146 |
verified: true
|
147 |
- task:
|
148 |
type: multimodal
|
149 |
dataset:
|
150 |
-
type: science-qa
|
151 |
name: Science-QA
|
|
|
152 |
metrics:
|
153 |
-
-
|
154 |
-
type: accuracy
|
155 |
value: 67.2
|
|
|
156 |
verified: true
|
157 |
- task:
|
158 |
type: multimodal
|
159 |
dataset:
|
160 |
-
type: imagedc
|
161 |
name: ImageDC
|
|
|
162 |
metrics:
|
163 |
-
-
|
164 |
-
type: accuracy
|
165 |
value: 83.3
|
|
|
166 |
verified: true
|
167 |
- task:
|
168 |
type: multimodal
|
169 |
dataset:
|
170 |
-
type: mmlbench
|
171 |
name: MMLBench
|
|
|
172 |
metrics:
|
173 |
-
-
|
174 |
-
type: accuracy
|
175 |
value: 49.9
|
|
|
176 |
verified: true
|
177 |
- task:
|
178 |
type: multimodal
|
179 |
dataset:
|
180 |
-
type: realworldqa
|
181 |
name: RealWorldQA
|
|
|
182 |
metrics:
|
183 |
-
-
|
184 |
-
type: accuracy
|
185 |
value: 55.6
|
|
|
186 |
verified: true
|
187 |
- task:
|
188 |
type: multimodal
|
189 |
dataset:
|
190 |
-
type: vibe-eval
|
191 |
name: Vibe-Eval
|
|
|
192 |
metrics:
|
193 |
-
-
|
194 |
-
type: accuracy
|
195 |
value: 33.8
|
|
|
196 |
verified: true
|
197 |
- task:
|
198 |
type: multimodal
|
199 |
dataset:
|
200 |
-
type: llava-w
|
201 |
name: LLaVA-W
|
|
|
202 |
metrics:
|
203 |
-
-
|
204 |
-
type: accuracy
|
205 |
value: 74.2
|
|
|
206 |
verified: true
|
207 |
- task:
|
208 |
type: multimodal
|
209 |
dataset:
|
210 |
-
type: l-wilder
|
211 |
name: L-Wilder
|
|
|
212 |
metrics:
|
213 |
-
-
|
214 |
-
type: accuracy
|
215 |
value: 55.0
|
|
|
216 |
verified: true
|
217 |
- task:
|
218 |
type: multimodal
|
219 |
dataset:
|
220 |
-
type: actnet-qa
|
221 |
name: ActNet-QA
|
|
|
222 |
metrics:
|
223 |
-
-
|
224 |
-
type: accuracy
|
225 |
value: 50.5
|
|
|
226 |
verified: true
|
227 |
- task:
|
228 |
type: multimodal
|
229 |
dataset:
|
230 |
-
type: egoschema
|
231 |
name: EgoSchema
|
|
|
232 |
metrics:
|
233 |
-
-
|
234 |
-
type: accuracy
|
235 |
value: 26.8
|
|
|
236 |
verified: true
|
237 |
- task:
|
238 |
type: multimodal
|
239 |
dataset:
|
240 |
-
type: mlvu
|
241 |
name: MLVU
|
|
|
242 |
metrics:
|
243 |
-
-
|
244 |
-
type: accuracy
|
245 |
value: 50.3
|
|
|
246 |
verified: true
|
247 |
- task:
|
248 |
type: multimodal
|
249 |
dataset:
|
250 |
-
type: mvbench
|
251 |
name: MVBench
|
|
|
252 |
metrics:
|
253 |
-
-
|
254 |
-
type: accuracy
|
255 |
value: 45.5
|
|
|
256 |
verified: true
|
257 |
- task:
|
258 |
type: multimodal
|
259 |
dataset:
|
260 |
-
type: nextqa
|
261 |
name: NextQA
|
|
|
262 |
metrics:
|
263 |
-
-
|
264 |
-
type: accuracy
|
265 |
value: 57.2
|
|
|
266 |
verified: true
|
267 |
- task:
|
268 |
type: multimodal
|
269 |
dataset:
|
270 |
-
type: percepTest
|
271 |
name: PercepTest
|
|
|
272 |
metrics:
|
273 |
-
-
|
274 |
-
type: accuracy
|
275 |
value: 49.2
|
|
|
276 |
verified: true
|
277 |
- task:
|
278 |
type: multimodal
|
279 |
dataset:
|
280 |
-
type: seedbench
|
281 |
name: SeedBench
|
|
|
282 |
metrics:
|
283 |
-
-
|
284 |
-
type: accuracy
|
285 |
value: 44.2
|
|
|
286 |
verified: true
|
287 |
- task:
|
288 |
type: multimodal
|
289 |
dataset:
|
290 |
-
type: videochatgpt
|
291 |
name: VideoChatGPT
|
|
|
292 |
metrics:
|
293 |
-
-
|
294 |
-
type: score
|
295 |
value: 3.12
|
|
|
296 |
verified: true
|
297 |
- task:
|
298 |
type: multimodal
|
299 |
dataset:
|
300 |
-
type: videodc
|
301 |
name: VideoDC
|
|
|
302 |
metrics:
|
303 |
-
-
|
304 |
-
type: score
|
305 |
value: 3.55
|
|
|
306 |
verified: true
|
307 |
- task:
|
308 |
type: multimodal
|
309 |
dataset:
|
310 |
-
type: videomme
|
311 |
name: VideoMME
|
|
|
312 |
metrics:
|
313 |
-
-
|
314 |
-
type: accuracy
|
315 |
value: 44.0
|
|
|
316 |
verified: true
|
317 |
- task:
|
318 |
type: multimodal
|
319 |
dataset:
|
320 |
-
type: iei
|
321 |
name: Image Edit Instruction
|
|
|
322 |
metrics:
|
323 |
-
-
|
324 |
-
type: accuracy
|
325 |
value: 17.1
|
|
|
326 |
verified: true
|
327 |
- task:
|
328 |
type: multimodal
|
329 |
dataset:
|
330 |
-
type: mi-vqa
|
331 |
name: MI-VQA
|
|
|
332 |
metrics:
|
333 |
-
-
|
334 |
-
type: accuracy
|
335 |
value: 48.7
|
|
|
336 |
verified: true
|
337 |
- task:
|
338 |
type: multimodal
|
339 |
dataset:
|
340 |
-
type: nlvr2
|
341 |
name: NLVR2
|
|
|
342 |
metrics:
|
343 |
-
-
|
344 |
-
type: accuracy
|
345 |
value: 63.4
|
|
|
346 |
verified: true
|
347 |
- task:
|
348 |
type: multimodal
|
349 |
dataset:
|
350 |
-
type: puzzle
|
351 |
name: Puzzle
|
|
|
352 |
metrics:
|
353 |
-
-
|
354 |
-
type: accuracy
|
355 |
value: 35.4
|
|
|
356 |
verified: true
|
357 |
- task:
|
358 |
type: multimodal
|
359 |
dataset:
|
360 |
-
type: q-bench
|
361 |
name: Q-Bench
|
|
|
362 |
metrics:
|
363 |
-
-
|
364 |
-
type: accuracy
|
365 |
value: 48.8
|
|
|
366 |
verified: true
|
367 |
- task:
|
368 |
type: multimodal
|
369 |
dataset:
|
370 |
-
type: spot-diff
|
371 |
name: Spot-Diff
|
|
|
372 |
metrics:
|
373 |
-
-
|
374 |
-
type: accuracy
|
375 |
value: 36.4
|
|
|
376 |
verified: true
|
377 |
- task:
|
378 |
type: multimodal
|
379 |
dataset:
|
380 |
-
type: tr-vqa
|
381 |
name: TR-VQA
|
|
|
382 |
metrics:
|
383 |
-
-
|
384 |
-
type: accuracy
|
385 |
value: 65.0
|
|
|
386 |
verified: true
|
387 |
- task:
|
388 |
type: multimodal
|
389 |
dataset:
|
390 |
-
type: vst
|
391 |
name: VST
|
|
|
392 |
metrics:
|
393 |
-
-
|
394 |
-
type: accuracy
|
395 |
value: 29.8
|
|
|
396 |
verified: true
|
397 |
- task:
|
398 |
type: multimodal
|
399 |
dataset:
|
400 |
-
type: scannet-chat
|
401 |
name: ScanNet-Chat
|
|
|
402 |
metrics:
|
403 |
-
-
|
404 |
-
|
405 |
-
|
406 |
verified: true
|
407 |
- task:
|
408 |
type: multimodal
|
409 |
dataset:
|
410 |
-
type: scannet-td
|
411 |
name: ScanNet-TD
|
|
|
412 |
metrics:
|
413 |
-
-
|
414 |
-
|
415 |
-
|
416 |
verified: true
|
417 |
- task:
|
418 |
type: multimodal
|
419 |
dataset:
|
420 |
-
type: scanqa
|
421 |
name: ScanQA
|
|
|
422 |
metrics:
|
423 |
-
-
|
424 |
-
|
425 |
-
|
426 |
verified: true
|
427 |
- task:
|
428 |
type: multimodal
|
429 |
dataset:
|
430 |
-
type: alfred
|
431 |
name: ALFRED
|
|
|
432 |
metrics:
|
433 |
-
-
|
434 |
-
|
435 |
-
|
436 |
verified: true
|
437 |
- task:
|
438 |
type: multimodal
|
439 |
dataset:
|
440 |
-
type: nuscenesvqa
|
441 |
name: nuScenesVQA
|
|
|
442 |
metrics:
|
443 |
-
-
|
444 |
-
|
445 |
-
|
446 |
verified: true
|
447 |
- task:
|
448 |
type: multimodal
|
449 |
dataset:
|
450 |
-
type: blink
|
451 |
name: BLINK
|
|
|
452 |
metrics:
|
453 |
-
-
|
454 |
-
type: accuracy
|
455 |
value: 52.1
|
|
|
456 |
verified: true
|
457 |
- task:
|
458 |
type: multimodal
|
459 |
dataset:
|
460 |
-
type: mantis
|
461 |
name: Mantis
|
|
|
462 |
metrics:
|
463 |
-
-
|
464 |
-
type: accuracy
|
465 |
value: 39.6
|
|
|
466 |
verified: true
|
467 |
- task:
|
468 |
type: multimodal
|
469 |
dataset:
|
470 |
-
type: mathverse-mv
|
471 |
name: MathVerse-mv
|
|
|
472 |
metrics:
|
473 |
-
-
|
474 |
-
type: accuracy
|
475 |
value: 60.0
|
|
|
476 |
verified: true
|
477 |
- task:
|
478 |
type: multimodal
|
479 |
dataset:
|
480 |
-
type: muirbench
|
481 |
name: MuirBench
|
|
|
482 |
metrics:
|
483 |
-
-
|
484 |
-
type: accuracy
|
485 |
value: 25.5
|
|
|
486 |
verified: true
|
487 |
- task:
|
488 |
type: multimodal
|
489 |
dataset:
|
490 |
-
type: sciverse-mv
|
491 |
name: SciVerse-mv
|
|
|
492 |
metrics:
|
493 |
-
-
|
494 |
-
type: accuracy
|
495 |
value: 29.1
|
496 |
-
|
|
|
497 |
---
|
498 |
|
499 |
|
|
|
1 |
---
|
|
|
2 |
datasets:
|
3 |
- lmms-lab/LLaVA-OneVision-Data
|
4 |
language:
|
5 |
- en
|
6 |
- zh
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
11 |
tags:
|
12 |
- multimodal
|
|
|
13 |
model-index:
|
14 |
- name: llava-onevision-qwen-0.5b-ov
|
15 |
results:
|
16 |
- task:
|
17 |
type: multimodal
|
18 |
dataset:
|
|
|
19 |
name: AI2D
|
20 |
+
type: ai2d
|
21 |
metrics:
|
22 |
+
- type: accuracy
|
|
|
23 |
value: 57.1
|
24 |
+
name: accuracy
|
25 |
verified: true
|
26 |
- task:
|
27 |
type: multimodal
|
28 |
dataset:
|
|
|
29 |
name: ChartQA
|
30 |
+
type: chartqa
|
31 |
metrics:
|
32 |
+
- type: accuracy
|
|
|
33 |
value: 61.4
|
34 |
+
name: accuracy
|
35 |
verified: true
|
36 |
- task:
|
37 |
type: multimodal
|
38 |
dataset:
|
|
|
39 |
name: DocVQA
|
40 |
+
type: docvqa
|
41 |
metrics:
|
42 |
+
- type: accuracy
|
|
|
43 |
value: 73.7
|
44 |
+
name: accuracy
|
45 |
verified: true
|
46 |
- task:
|
47 |
type: multimodal
|
48 |
dataset:
|
|
|
49 |
name: InfoVQA
|
50 |
+
type: infovqa
|
51 |
metrics:
|
52 |
+
- type: accuracy
|
|
|
53 |
value: 46.3
|
54 |
+
name: accuracy
|
55 |
verified: true
|
56 |
- task:
|
57 |
type: multimodal
|
58 |
dataset:
|
|
|
59 |
name: MathVerse
|
60 |
+
type: mathverse
|
61 |
metrics:
|
62 |
+
- type: accuracy
|
|
|
63 |
value: 17.9
|
64 |
+
name: accuracy
|
65 |
verified: true
|
66 |
- task:
|
67 |
type: multimodal
|
68 |
dataset:
|
|
|
69 |
name: MathVista
|
70 |
+
type: mathvista
|
71 |
metrics:
|
72 |
+
- type: accuracy
|
|
|
73 |
value: 34.8
|
74 |
+
name: accuracy
|
75 |
verified: true
|
76 |
- task:
|
77 |
type: multimodal
|
78 |
dataset:
|
|
|
79 |
name: MMBench
|
80 |
+
type: mmbench
|
81 |
metrics:
|
82 |
+
- type: accuracy
|
|
|
83 |
value: 52.1
|
84 |
+
name: accuracy
|
85 |
verified: true
|
86 |
- task:
|
87 |
type: multimodal
|
88 |
dataset:
|
|
|
89 |
name: MME-Perception
|
90 |
+
type: mme-perception
|
91 |
metrics:
|
92 |
+
- type: score
|
|
|
93 |
value: 1238
|
94 |
+
name: score
|
95 |
verified: true
|
96 |
- task:
|
97 |
type: multimodal
|
98 |
dataset:
|
|
|
99 |
name: MME-Cognition
|
100 |
+
type: mme-cognition
|
101 |
metrics:
|
102 |
+
- type: score
|
|
|
103 |
value: 240
|
104 |
+
name: score
|
105 |
+
verified: true
|
106 |
- task:
|
107 |
type: multimodal
|
108 |
dataset:
|
|
|
109 |
name: MMMU
|
110 |
+
type: mmmu
|
111 |
metrics:
|
112 |
+
- type: accuracy
|
|
|
113 |
value: 31.4
|
114 |
+
name: accuracy
|
115 |
verified: true
|
116 |
- task:
|
117 |
type: multimodal
|
118 |
dataset:
|
|
|
119 |
name: MMVet
|
120 |
+
type: mmvet
|
121 |
metrics:
|
122 |
+
- type: accuracy
|
|
|
123 |
value: 29.1
|
124 |
+
name: accuracy
|
125 |
verified: true
|
126 |
- task:
|
127 |
type: multimodal
|
128 |
dataset:
|
|
|
129 |
name: MMStar
|
130 |
+
type: mmstar
|
131 |
metrics:
|
132 |
+
- type: accuracy
|
|
|
133 |
value: 37.5
|
134 |
+
name: accuracy
|
135 |
verified: true
|
136 |
- task:
|
137 |
type: multimodal
|
138 |
dataset:
|
|
|
139 |
name: Seed-Bench
|
140 |
+
type: seed-bench
|
141 |
metrics:
|
142 |
+
- type: accuracy
|
|
|
143 |
value: 65.5
|
144 |
+
name: accuracy
|
145 |
verified: true
|
146 |
- task:
|
147 |
type: multimodal
|
148 |
dataset:
|
|
|
149 |
name: Science-QA
|
150 |
+
type: science-qa
|
151 |
metrics:
|
152 |
+
- type: accuracy
|
|
|
153 |
value: 67.2
|
154 |
+
name: accuracy
|
155 |
verified: true
|
156 |
- task:
|
157 |
type: multimodal
|
158 |
dataset:
|
|
|
159 |
name: ImageDC
|
160 |
+
type: imagedc
|
161 |
metrics:
|
162 |
+
- type: accuracy
|
|
|
163 |
value: 83.3
|
164 |
+
name: accuracy
|
165 |
verified: true
|
166 |
- task:
|
167 |
type: multimodal
|
168 |
dataset:
|
|
|
169 |
name: MMLBench
|
170 |
+
type: mmlbench
|
171 |
metrics:
|
172 |
+
- type: accuracy
|
|
|
173 |
value: 49.9
|
174 |
+
name: accuracy
|
175 |
verified: true
|
176 |
- task:
|
177 |
type: multimodal
|
178 |
dataset:
|
|
|
179 |
name: RealWorldQA
|
180 |
+
type: realworldqa
|
181 |
metrics:
|
182 |
+
- type: accuracy
|
|
|
183 |
value: 55.6
|
184 |
+
name: accuracy
|
185 |
verified: true
|
186 |
- task:
|
187 |
type: multimodal
|
188 |
dataset:
|
|
|
189 |
name: Vibe-Eval
|
190 |
+
type: vibe-eval
|
191 |
metrics:
|
192 |
+
- type: accuracy
|
|
|
193 |
value: 33.8
|
194 |
+
name: accuracy
|
195 |
verified: true
|
196 |
- task:
|
197 |
type: multimodal
|
198 |
dataset:
|
|
|
199 |
name: LLaVA-W
|
200 |
+
type: llava-w
|
201 |
metrics:
|
202 |
+
- type: accuracy
|
|
|
203 |
value: 74.2
|
204 |
+
name: accuracy
|
205 |
verified: true
|
206 |
- task:
|
207 |
type: multimodal
|
208 |
dataset:
|
|
|
209 |
name: L-Wilder
|
210 |
+
type: l-wilder
|
211 |
metrics:
|
212 |
+
- type: accuracy
|
|
|
213 |
value: 55.0
|
214 |
+
name: accuracy
|
215 |
verified: true
|
216 |
- task:
|
217 |
type: multimodal
|
218 |
dataset:
|
|
|
219 |
name: ActNet-QA
|
220 |
+
type: actnet-qa
|
221 |
metrics:
|
222 |
+
- type: accuracy
|
|
|
223 |
value: 50.5
|
224 |
+
name: accuracy
|
225 |
verified: true
|
226 |
- task:
|
227 |
type: multimodal
|
228 |
dataset:
|
|
|
229 |
name: EgoSchema
|
230 |
+
type: egoschema
|
231 |
metrics:
|
232 |
+
- type: accuracy
|
|
|
233 |
value: 26.8
|
234 |
+
name: accuracy
|
235 |
verified: true
|
236 |
- task:
|
237 |
type: multimodal
|
238 |
dataset:
|
|
|
239 |
name: MLVU
|
240 |
+
type: mlvu
|
241 |
metrics:
|
242 |
+
- type: accuracy
|
|
|
243 |
value: 50.3
|
244 |
+
name: accuracy
|
245 |
verified: true
|
246 |
- task:
|
247 |
type: multimodal
|
248 |
dataset:
|
|
|
249 |
name: MVBench
|
250 |
+
type: mvbench
|
251 |
metrics:
|
252 |
+
- type: accuracy
|
|
|
253 |
value: 45.5
|
254 |
+
name: accuracy
|
255 |
verified: true
|
256 |
- task:
|
257 |
type: multimodal
|
258 |
dataset:
|
|
|
259 |
name: NextQA
|
260 |
+
type: nextqa
|
261 |
metrics:
|
262 |
+
- type: accuracy
|
|
|
263 |
value: 57.2
|
264 |
+
name: accuracy
|
265 |
verified: true
|
266 |
- task:
|
267 |
type: multimodal
|
268 |
dataset:
|
|
|
269 |
name: PercepTest
|
270 |
+
type: percepTest
|
271 |
metrics:
|
272 |
+
- type: accuracy
|
|
|
273 |
value: 49.2
|
274 |
+
name: accuracy
|
275 |
verified: true
|
276 |
- task:
|
277 |
type: multimodal
|
278 |
dataset:
|
|
|
279 |
name: SeedBench
|
280 |
+
type: seedbench
|
281 |
metrics:
|
282 |
+
- type: accuracy
|
|
|
283 |
value: 44.2
|
284 |
+
name: accuracy
|
285 |
verified: true
|
286 |
- task:
|
287 |
type: multimodal
|
288 |
dataset:
|
|
|
289 |
name: VideoChatGPT
|
290 |
+
type: videochatgpt
|
291 |
metrics:
|
292 |
+
- type: score
|
|
|
293 |
value: 3.12
|
294 |
+
name: score
|
295 |
verified: true
|
296 |
- task:
|
297 |
type: multimodal
|
298 |
dataset:
|
|
|
299 |
name: VideoDC
|
300 |
+
type: videodc
|
301 |
metrics:
|
302 |
+
- type: score
|
|
|
303 |
value: 3.55
|
304 |
+
name: score
|
305 |
verified: true
|
306 |
- task:
|
307 |
type: multimodal
|
308 |
dataset:
|
|
|
309 |
name: VideoMME
|
310 |
+
type: videomme
|
311 |
metrics:
|
312 |
+
- type: accuracy
|
|
|
313 |
value: 44.0
|
314 |
+
name: accuracy
|
315 |
verified: true
|
316 |
- task:
|
317 |
type: multimodal
|
318 |
dataset:
|
|
|
319 |
name: Image Edit Instruction
|
320 |
+
type: iei
|
321 |
metrics:
|
322 |
+
- type: accuracy
|
|
|
323 |
value: 17.1
|
324 |
+
name: accuracy
|
325 |
verified: true
|
326 |
- task:
|
327 |
type: multimodal
|
328 |
dataset:
|
|
|
329 |
name: MI-VQA
|
330 |
+
type: mi-vqa
|
331 |
metrics:
|
332 |
+
- type: accuracy
|
|
|
333 |
value: 48.7
|
334 |
+
name: accuracy
|
335 |
verified: true
|
336 |
- task:
|
337 |
type: multimodal
|
338 |
dataset:
|
|
|
339 |
name: NLVR2
|
340 |
+
type: nlvr2
|
341 |
metrics:
|
342 |
+
- type: accuracy
|
|
|
343 |
value: 63.4
|
344 |
+
name: accuracy
|
345 |
verified: true
|
346 |
- task:
|
347 |
type: multimodal
|
348 |
dataset:
|
|
|
349 |
name: Puzzle
|
350 |
+
type: puzzle
|
351 |
metrics:
|
352 |
+
- type: accuracy
|
|
|
353 |
value: 35.4
|
354 |
+
name: accuracy
|
355 |
verified: true
|
356 |
- task:
|
357 |
type: multimodal
|
358 |
dataset:
|
|
|
359 |
name: Q-Bench
|
360 |
+
type: q-bench
|
361 |
metrics:
|
362 |
+
- type: accuracy
|
|
|
363 |
value: 48.8
|
364 |
+
name: accuracy
|
365 |
verified: true
|
366 |
- task:
|
367 |
type: multimodal
|
368 |
dataset:
|
|
|
369 |
name: Spot-Diff
|
370 |
+
type: spot-diff
|
371 |
metrics:
|
372 |
+
- type: accuracy
|
|
|
373 |
value: 36.4
|
374 |
+
name: accuracy
|
375 |
verified: true
|
376 |
- task:
|
377 |
type: multimodal
|
378 |
dataset:
|
|
|
379 |
name: TR-VQA
|
380 |
+
type: tr-vqa
|
381 |
metrics:
|
382 |
+
- type: accuracy
|
|
|
383 |
value: 65.0
|
384 |
+
name: accuracy
|
385 |
verified: true
|
386 |
- task:
|
387 |
type: multimodal
|
388 |
dataset:
|
|
|
389 |
name: VST
|
390 |
+
type: vst
|
391 |
metrics:
|
392 |
+
- type: accuracy
|
|
|
393 |
value: 29.8
|
394 |
+
name: accuracy
|
395 |
verified: true
|
396 |
- task:
|
397 |
type: multimodal
|
398 |
dataset:
|
|
|
399 |
name: ScanNet-Chat
|
400 |
+
type: scannet-chat
|
401 |
metrics:
|
402 |
+
- type: accuracy
|
403 |
+
value: 60.0
|
404 |
+
name: accuracy
|
405 |
verified: true
|
406 |
- task:
|
407 |
type: multimodal
|
408 |
dataset:
|
|
|
409 |
name: ScanNet-TD
|
410 |
+
type: scannet-td
|
411 |
metrics:
|
412 |
+
- type: accuracy
|
413 |
+
value: 48.0
|
414 |
+
name: accuracy
|
415 |
verified: true
|
416 |
- task:
|
417 |
type: multimodal
|
418 |
dataset:
|
|
|
419 |
name: ScanQA
|
420 |
+
type: scanqa
|
421 |
metrics:
|
422 |
+
- type: accuracy
|
423 |
+
value: 29.4
|
424 |
+
name: accuracy
|
425 |
verified: true
|
426 |
- task:
|
427 |
type: multimodal
|
428 |
dataset:
|
|
|
429 |
name: ALFRED
|
430 |
+
type: alfred
|
431 |
metrics:
|
432 |
+
- type: accuracy
|
433 |
+
value: 62.2
|
434 |
+
name: accuracy
|
435 |
verified: true
|
436 |
- task:
|
437 |
type: multimodal
|
438 |
dataset:
|
|
|
439 |
name: nuScenesVQA
|
440 |
+
type: nuscenesvqa
|
441 |
metrics:
|
442 |
+
- type: accuracy
|
443 |
+
value: 70.5
|
444 |
+
name: accuracy
|
445 |
verified: true
|
446 |
- task:
|
447 |
type: multimodal
|
448 |
dataset:
|
|
|
449 |
name: BLINK
|
450 |
+
type: blink
|
451 |
metrics:
|
452 |
+
- type: accuracy
|
|
|
453 |
value: 52.1
|
454 |
+
name: accuracy
|
455 |
verified: true
|
456 |
- task:
|
457 |
type: multimodal
|
458 |
dataset:
|
|
|
459 |
name: Mantis
|
460 |
+
type: mantis
|
461 |
metrics:
|
462 |
+
- type: accuracy
|
|
|
463 |
value: 39.6
|
464 |
+
name: accuracy
|
465 |
verified: true
|
466 |
- task:
|
467 |
type: multimodal
|
468 |
dataset:
|
|
|
469 |
name: MathVerse-mv
|
470 |
+
type: mathverse-mv
|
471 |
metrics:
|
472 |
+
- type: accuracy
|
|
|
473 |
value: 60.0
|
474 |
+
name: accuracy
|
475 |
verified: true
|
476 |
- task:
|
477 |
type: multimodal
|
478 |
dataset:
|
|
|
479 |
name: MuirBench
|
480 |
+
type: muirbench
|
481 |
metrics:
|
482 |
+
- type: accuracy
|
|
|
483 |
value: 25.5
|
484 |
+
name: accuracy
|
485 |
verified: true
|
486 |
- task:
|
487 |
type: multimodal
|
488 |
dataset:
|
|
|
489 |
name: SciVerse-mv
|
490 |
+
type: sciverse-mv
|
491 |
metrics:
|
492 |
+
- type: accuracy
|
|
|
493 |
value: 29.1
|
494 |
+
name: accuracy
|
495 |
+
verified: true
|
496 |
---
|
497 |
|
498 |
|
added_tokens.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"<|endoftext|>": 151643,
|
3 |
"<|im_end|>": 151645,
|
4 |
"<|im_start|>": 151644
|
|
|
1 |
{
|
2 |
+
"<image>": 151646,
|
3 |
"<|endoftext|>": 151643,
|
4 |
"<|im_end|>": 151645,
|
5 |
"<|im_start|>": 151644
|
tokenizer.json
CHANGED
@@ -29,6 +29,15 @@
|
|
29 |
"rstrip": false,
|
30 |
"normalized": false,
|
31 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
],
|
34 |
"normalizer": {
|
@@ -73,6 +82,7 @@
|
|
73 |
"end_of_word_suffix": "",
|
74 |
"fuse_unk": false,
|
75 |
"byte_fallback": false,
|
|
|
76 |
"vocab": {
|
77 |
"!": 0,
|
78 |
"\"": 1,
|
|
|
29 |
"rstrip": false,
|
30 |
"normalized": false,
|
31 |
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 151646,
|
35 |
+
"content": "<image>",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
}
|
42 |
],
|
43 |
"normalizer": {
|
|
|
82 |
"end_of_word_suffix": "",
|
83 |
"fuse_unk": false,
|
84 |
"byte_fallback": false,
|
85 |
+
"ignore_merges": false,
|
86 |
"vocab": {
|
87 |
"!": 0,
|
88 |
"\"": 1,
|
tokenizer_config.json
CHANGED
@@ -24,6 +24,14 @@
|
|
24 |
"rstrip": false,
|
25 |
"single_word": false,
|
26 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
28 |
},
|
29 |
"additional_special_tokens": [
|
|
|
24 |
"rstrip": false,
|
25 |
"single_word": false,
|
26 |
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<image>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
}
|
36 |
},
|
37 |
"additional_special_tokens": [
|