kcz358 commited on
Commit
be95b3e
1 Parent(s): e0373a8

Upload tokenizer

Browse files
Files changed (4) hide show
  1. README.md +153 -154
  2. added_tokens.json +1 -0
  3. tokenizer.json +10 -0
  4. tokenizer_config.json +8 -0
README.md CHANGED
@@ -1,499 +1,498 @@
1
  ---
2
- license: apache-2.0
3
  datasets:
4
  - lmms-lab/LLaVA-OneVision-Data
5
  language:
6
  - en
7
  - zh
 
 
8
  metrics:
9
  - accuracy
10
- library_name: transformers
11
  tags:
12
  - multimodal
13
-
14
  model-index:
15
  - name: llava-onevision-qwen-0.5b-ov
16
  results:
17
  - task:
18
  type: multimodal
19
  dataset:
20
- type: ai2d
21
  name: AI2D
 
22
  metrics:
23
- - name: accuracy
24
- type: accuracy
25
  value: 57.1
 
26
  verified: true
27
  - task:
28
  type: multimodal
29
  dataset:
30
- type: chartqa
31
  name: ChartQA
 
32
  metrics:
33
- - name: accuracy
34
- type: accuracy
35
  value: 61.4
 
36
  verified: true
37
  - task:
38
  type: multimodal
39
  dataset:
40
- type: docvqa
41
  name: DocVQA
 
42
  metrics:
43
- - name: accuracy
44
- type: accuracy
45
  value: 73.7
 
46
  verified: true
47
  - task:
48
  type: multimodal
49
  dataset:
50
- type: infovqa
51
  name: InfoVQA
 
52
  metrics:
53
- - name: accuracy
54
- type: accuracy
55
  value: 46.3
 
56
  verified: true
57
  - task:
58
  type: multimodal
59
  dataset:
60
- type: mathverse
61
  name: MathVerse
 
62
  metrics:
63
- - name: accuracy
64
- type: accuracy
65
  value: 17.9
 
66
  verified: true
67
  - task:
68
  type: multimodal
69
  dataset:
70
- type: mathvista
71
  name: MathVista
 
72
  metrics:
73
- - name: accuracy
74
- type: accuracy
75
  value: 34.8
 
76
  verified: true
77
  - task:
78
  type: multimodal
79
  dataset:
80
- type: mmbench
81
  name: MMBench
 
82
  metrics:
83
- - name: accuracy
84
- type: accuracy
85
  value: 52.1
 
86
  verified: true
87
  - task:
88
  type: multimodal
89
  dataset:
90
- type: mme-perception
91
  name: MME-Perception
 
92
  metrics:
93
- - name: score
94
- type: score
95
  value: 1238
 
96
  verified: true
97
  - task:
98
  type: multimodal
99
  dataset:
100
- type: mme-cognition
101
  name: MME-Cognition
 
102
  metrics:
103
- - name: score
104
- type: score
105
  value: 240
106
- verified: true
 
107
  - task:
108
  type: multimodal
109
  dataset:
110
- type: mmmu
111
  name: MMMU
 
112
  metrics:
113
- - name: accuracy
114
- type: accuracy
115
  value: 31.4
 
116
  verified: true
117
  - task:
118
  type: multimodal
119
  dataset:
120
- type: mmvet
121
  name: MMVet
 
122
  metrics:
123
- - name: accuracy
124
- type: accuracy
125
  value: 29.1
 
126
  verified: true
127
  - task:
128
  type: multimodal
129
  dataset:
130
- type: mmstar
131
  name: MMStar
 
132
  metrics:
133
- - name: accuracy
134
- type: accuracy
135
  value: 37.5
 
136
  verified: true
137
  - task:
138
  type: multimodal
139
  dataset:
140
- type: seed-bench
141
  name: Seed-Bench
 
142
  metrics:
143
- - name: accuracy
144
- type: accuracy
145
  value: 65.5
 
146
  verified: true
147
  - task:
148
  type: multimodal
149
  dataset:
150
- type: science-qa
151
  name: Science-QA
 
152
  metrics:
153
- - name: accuracy
154
- type: accuracy
155
  value: 67.2
 
156
  verified: true
157
  - task:
158
  type: multimodal
159
  dataset:
160
- type: imagedc
161
  name: ImageDC
 
162
  metrics:
163
- - name: accuracy
164
- type: accuracy
165
  value: 83.3
 
166
  verified: true
167
  - task:
168
  type: multimodal
169
  dataset:
170
- type: mmlbench
171
  name: MMLBench
 
172
  metrics:
173
- - name: accuracy
174
- type: accuracy
175
  value: 49.9
 
176
  verified: true
177
  - task:
178
  type: multimodal
179
  dataset:
180
- type: realworldqa
181
  name: RealWorldQA
 
182
  metrics:
183
- - name: accuracy
184
- type: accuracy
185
  value: 55.6
 
186
  verified: true
187
  - task:
188
  type: multimodal
189
  dataset:
190
- type: vibe-eval
191
  name: Vibe-Eval
 
192
  metrics:
193
- - name: accuracy
194
- type: accuracy
195
  value: 33.8
 
196
  verified: true
197
  - task:
198
  type: multimodal
199
  dataset:
200
- type: llava-w
201
  name: LLaVA-W
 
202
  metrics:
203
- - name: accuracy
204
- type: accuracy
205
  value: 74.2
 
206
  verified: true
207
  - task:
208
  type: multimodal
209
  dataset:
210
- type: l-wilder
211
  name: L-Wilder
 
212
  metrics:
213
- - name: accuracy
214
- type: accuracy
215
  value: 55.0
 
216
  verified: true
217
  - task:
218
  type: multimodal
219
  dataset:
220
- type: actnet-qa
221
  name: ActNet-QA
 
222
  metrics:
223
- - name: accuracy
224
- type: accuracy
225
  value: 50.5
 
226
  verified: true
227
  - task:
228
  type: multimodal
229
  dataset:
230
- type: egoschema
231
  name: EgoSchema
 
232
  metrics:
233
- - name: accuracy
234
- type: accuracy
235
  value: 26.8
 
236
  verified: true
237
  - task:
238
  type: multimodal
239
  dataset:
240
- type: mlvu
241
  name: MLVU
 
242
  metrics:
243
- - name: accuracy
244
- type: accuracy
245
  value: 50.3
 
246
  verified: true
247
  - task:
248
  type: multimodal
249
  dataset:
250
- type: mvbench
251
  name: MVBench
 
252
  metrics:
253
- - name: accuracy
254
- type: accuracy
255
  value: 45.5
 
256
  verified: true
257
  - task:
258
  type: multimodal
259
  dataset:
260
- type: nextqa
261
  name: NextQA
 
262
  metrics:
263
- - name: accuracy
264
- type: accuracy
265
  value: 57.2
 
266
  verified: true
267
  - task:
268
  type: multimodal
269
  dataset:
270
- type: percepTest
271
  name: PercepTest
 
272
  metrics:
273
- - name: accuracy
274
- type: accuracy
275
  value: 49.2
 
276
  verified: true
277
  - task:
278
  type: multimodal
279
  dataset:
280
- type: seedbench
281
  name: SeedBench
 
282
  metrics:
283
- - name: accuracy
284
- type: accuracy
285
  value: 44.2
 
286
  verified: true
287
  - task:
288
  type: multimodal
289
  dataset:
290
- type: videochatgpt
291
  name: VideoChatGPT
 
292
  metrics:
293
- - name: score
294
- type: score
295
  value: 3.12
 
296
  verified: true
297
  - task:
298
  type: multimodal
299
  dataset:
300
- type: videodc
301
  name: VideoDC
 
302
  metrics:
303
- - name: score
304
- type: score
305
  value: 3.55
 
306
  verified: true
307
  - task:
308
  type: multimodal
309
  dataset:
310
- type: videomme
311
  name: VideoMME
 
312
  metrics:
313
- - name: accuracy
314
- type: accuracy
315
  value: 44.0
 
316
  verified: true
317
  - task:
318
  type: multimodal
319
  dataset:
320
- type: iei
321
  name: Image Edit Instruction
 
322
  metrics:
323
- - name: accuracy
324
- type: accuracy
325
  value: 17.1
 
326
  verified: true
327
  - task:
328
  type: multimodal
329
  dataset:
330
- type: mi-vqa
331
  name: MI-VQA
 
332
  metrics:
333
- - name: accuracy
334
- type: accuracy
335
  value: 48.7
 
336
  verified: true
337
  - task:
338
  type: multimodal
339
  dataset:
340
- type: nlvr2
341
  name: NLVR2
 
342
  metrics:
343
- - name: accuracy
344
- type: accuracy
345
  value: 63.4
 
346
  verified: true
347
  - task:
348
  type: multimodal
349
  dataset:
350
- type: puzzle
351
  name: Puzzle
 
352
  metrics:
353
- - name: accuracy
354
- type: accuracy
355
  value: 35.4
 
356
  verified: true
357
  - task:
358
  type: multimodal
359
  dataset:
360
- type: q-bench
361
  name: Q-Bench
 
362
  metrics:
363
- - name: accuracy
364
- type: accuracy
365
  value: 48.8
 
366
  verified: true
367
  - task:
368
  type: multimodal
369
  dataset:
370
- type: spot-diff
371
  name: Spot-Diff
 
372
  metrics:
373
- - name: accuracy
374
- type: accuracy
375
  value: 36.4
 
376
  verified: true
377
  - task:
378
  type: multimodal
379
  dataset:
380
- type: tr-vqa
381
  name: TR-VQA
 
382
  metrics:
383
- - name: accuracy
384
- type: accuracy
385
  value: 65.0
 
386
  verified: true
387
  - task:
388
  type: multimodal
389
  dataset:
390
- type: vst
391
  name: VST
 
392
  metrics:
393
- - name: accuracy
394
- type: accuracy
395
  value: 29.8
 
396
  verified: true
397
  - task:
398
  type: multimodal
399
  dataset:
400
- type: scannet-chat
401
  name: ScanNet-Chat
 
402
  metrics:
403
- - name: accuracy
404
- type: accuracy
405
- value: 60.00
406
  verified: true
407
  - task:
408
  type: multimodal
409
  dataset:
410
- type: scannet-td
411
  name: ScanNet-TD
 
412
  metrics:
413
- - name: accuracy
414
- type: accuracy
415
- value: 48.00
416
  verified: true
417
  - task:
418
  type: multimodal
419
  dataset:
420
- type: scanqa
421
  name: ScanQA
 
422
  metrics:
423
- - name: accuracy
424
- type: accuracy
425
- value: 29.40
426
  verified: true
427
  - task:
428
  type: multimodal
429
  dataset:
430
- type: alfred
431
  name: ALFRED
 
432
  metrics:
433
- - name: accuracy
434
- type: accuracy
435
- value: 62.20
436
  verified: true
437
  - task:
438
  type: multimodal
439
  dataset:
440
- type: nuscenesvqa
441
  name: nuScenesVQA
 
442
  metrics:
443
- - name: accuracy
444
- type: accuracy
445
- value: 70.50
446
  verified: true
447
  - task:
448
  type: multimodal
449
  dataset:
450
- type: blink
451
  name: BLINK
 
452
  metrics:
453
- - name: accuracy
454
- type: accuracy
455
  value: 52.1
 
456
  verified: true
457
  - task:
458
  type: multimodal
459
  dataset:
460
- type: mantis
461
  name: Mantis
 
462
  metrics:
463
- - name: accuracy
464
- type: accuracy
465
  value: 39.6
 
466
  verified: true
467
  - task:
468
  type: multimodal
469
  dataset:
470
- type: mathverse-mv
471
  name: MathVerse-mv
 
472
  metrics:
473
- - name: accuracy
474
- type: accuracy
475
  value: 60.0
 
476
  verified: true
477
  - task:
478
  type: multimodal
479
  dataset:
480
- type: muirbench
481
  name: MuirBench
 
482
  metrics:
483
- - name: accuracy
484
- type: accuracy
485
  value: 25.5
 
486
  verified: true
487
  - task:
488
  type: multimodal
489
  dataset:
490
- type: sciverse-mv
491
  name: SciVerse-mv
 
492
  metrics:
493
- - name: accuracy
494
- type: accuracy
495
  value: 29.1
496
- verified: true
 
497
  ---
498
 
499
 
 
1
  ---
 
2
  datasets:
3
  - lmms-lab/LLaVA-OneVision-Data
4
  language:
5
  - en
6
  - zh
7
+ library_name: transformers
8
+ license: apache-2.0
9
  metrics:
10
  - accuracy
 
11
  tags:
12
  - multimodal
 
13
  model-index:
14
  - name: llava-onevision-qwen-0.5b-ov
15
  results:
16
  - task:
17
  type: multimodal
18
  dataset:
 
19
  name: AI2D
20
+ type: ai2d
21
  metrics:
22
+ - type: accuracy
 
23
  value: 57.1
24
+ name: accuracy
25
  verified: true
26
  - task:
27
  type: multimodal
28
  dataset:
 
29
  name: ChartQA
30
+ type: chartqa
31
  metrics:
32
+ - type: accuracy
 
33
  value: 61.4
34
+ name: accuracy
35
  verified: true
36
  - task:
37
  type: multimodal
38
  dataset:
 
39
  name: DocVQA
40
+ type: docvqa
41
  metrics:
42
+ - type: accuracy
 
43
  value: 73.7
44
+ name: accuracy
45
  verified: true
46
  - task:
47
  type: multimodal
48
  dataset:
 
49
  name: InfoVQA
50
+ type: infovqa
51
  metrics:
52
+ - type: accuracy
 
53
  value: 46.3
54
+ name: accuracy
55
  verified: true
56
  - task:
57
  type: multimodal
58
  dataset:
 
59
  name: MathVerse
60
+ type: mathverse
61
  metrics:
62
+ - type: accuracy
 
63
  value: 17.9
64
+ name: accuracy
65
  verified: true
66
  - task:
67
  type: multimodal
68
  dataset:
 
69
  name: MathVista
70
+ type: mathvista
71
  metrics:
72
+ - type: accuracy
 
73
  value: 34.8
74
+ name: accuracy
75
  verified: true
76
  - task:
77
  type: multimodal
78
  dataset:
 
79
  name: MMBench
80
+ type: mmbench
81
  metrics:
82
+ - type: accuracy
 
83
  value: 52.1
84
+ name: accuracy
85
  verified: true
86
  - task:
87
  type: multimodal
88
  dataset:
 
89
  name: MME-Perception
90
+ type: mme-perception
91
  metrics:
92
+ - type: score
 
93
  value: 1238
94
+ name: score
95
  verified: true
96
  - task:
97
  type: multimodal
98
  dataset:
 
99
  name: MME-Cognition
100
+ type: mme-cognition
101
  metrics:
102
+ - type: score
 
103
  value: 240
104
+ name: score
105
+ verified: true
106
  - task:
107
  type: multimodal
108
  dataset:
 
109
  name: MMMU
110
+ type: mmmu
111
  metrics:
112
+ - type: accuracy
 
113
  value: 31.4
114
+ name: accuracy
115
  verified: true
116
  - task:
117
  type: multimodal
118
  dataset:
 
119
  name: MMVet
120
+ type: mmvet
121
  metrics:
122
+ - type: accuracy
 
123
  value: 29.1
124
+ name: accuracy
125
  verified: true
126
  - task:
127
  type: multimodal
128
  dataset:
 
129
  name: MMStar
130
+ type: mmstar
131
  metrics:
132
+ - type: accuracy
 
133
  value: 37.5
134
+ name: accuracy
135
  verified: true
136
  - task:
137
  type: multimodal
138
  dataset:
 
139
  name: Seed-Bench
140
+ type: seed-bench
141
  metrics:
142
+ - type: accuracy
 
143
  value: 65.5
144
+ name: accuracy
145
  verified: true
146
  - task:
147
  type: multimodal
148
  dataset:
 
149
  name: Science-QA
150
+ type: science-qa
151
  metrics:
152
+ - type: accuracy
 
153
  value: 67.2
154
+ name: accuracy
155
  verified: true
156
  - task:
157
  type: multimodal
158
  dataset:
 
159
  name: ImageDC
160
+ type: imagedc
161
  metrics:
162
+ - type: accuracy
 
163
  value: 83.3
164
+ name: accuracy
165
  verified: true
166
  - task:
167
  type: multimodal
168
  dataset:
 
169
  name: MMLBench
170
+ type: mmlbench
171
  metrics:
172
+ - type: accuracy
 
173
  value: 49.9
174
+ name: accuracy
175
  verified: true
176
  - task:
177
  type: multimodal
178
  dataset:
 
179
  name: RealWorldQA
180
+ type: realworldqa
181
  metrics:
182
+ - type: accuracy
 
183
  value: 55.6
184
+ name: accuracy
185
  verified: true
186
  - task:
187
  type: multimodal
188
  dataset:
 
189
  name: Vibe-Eval
190
+ type: vibe-eval
191
  metrics:
192
+ - type: accuracy
 
193
  value: 33.8
194
+ name: accuracy
195
  verified: true
196
  - task:
197
  type: multimodal
198
  dataset:
 
199
  name: LLaVA-W
200
+ type: llava-w
201
  metrics:
202
+ - type: accuracy
 
203
  value: 74.2
204
+ name: accuracy
205
  verified: true
206
  - task:
207
  type: multimodal
208
  dataset:
 
209
  name: L-Wilder
210
+ type: l-wilder
211
  metrics:
212
+ - type: accuracy
 
213
  value: 55.0
214
+ name: accuracy
215
  verified: true
216
  - task:
217
  type: multimodal
218
  dataset:
 
219
  name: ActNet-QA
220
+ type: actnet-qa
221
  metrics:
222
+ - type: accuracy
 
223
  value: 50.5
224
+ name: accuracy
225
  verified: true
226
  - task:
227
  type: multimodal
228
  dataset:
 
229
  name: EgoSchema
230
+ type: egoschema
231
  metrics:
232
+ - type: accuracy
 
233
  value: 26.8
234
+ name: accuracy
235
  verified: true
236
  - task:
237
  type: multimodal
238
  dataset:
 
239
  name: MLVU
240
+ type: mlvu
241
  metrics:
242
+ - type: accuracy
 
243
  value: 50.3
244
+ name: accuracy
245
  verified: true
246
  - task:
247
  type: multimodal
248
  dataset:
 
249
  name: MVBench
250
+ type: mvbench
251
  metrics:
252
+ - type: accuracy
 
253
  value: 45.5
254
+ name: accuracy
255
  verified: true
256
  - task:
257
  type: multimodal
258
  dataset:
 
259
  name: NextQA
260
+ type: nextqa
261
  metrics:
262
+ - type: accuracy
 
263
  value: 57.2
264
+ name: accuracy
265
  verified: true
266
  - task:
267
  type: multimodal
268
  dataset:
 
269
  name: PercepTest
270
+ type: percepTest
271
  metrics:
272
+ - type: accuracy
 
273
  value: 49.2
274
+ name: accuracy
275
  verified: true
276
  - task:
277
  type: multimodal
278
  dataset:
 
279
  name: SeedBench
280
+ type: seedbench
281
  metrics:
282
+ - type: accuracy
 
283
  value: 44.2
284
+ name: accuracy
285
  verified: true
286
  - task:
287
  type: multimodal
288
  dataset:
 
289
  name: VideoChatGPT
290
+ type: videochatgpt
291
  metrics:
292
+ - type: score
 
293
  value: 3.12
294
+ name: score
295
  verified: true
296
  - task:
297
  type: multimodal
298
  dataset:
 
299
  name: VideoDC
300
+ type: videodc
301
  metrics:
302
+ - type: score
 
303
  value: 3.55
304
+ name: score
305
  verified: true
306
  - task:
307
  type: multimodal
308
  dataset:
 
309
  name: VideoMME
310
+ type: videomme
311
  metrics:
312
+ - type: accuracy
 
313
  value: 44.0
314
+ name: accuracy
315
  verified: true
316
  - task:
317
  type: multimodal
318
  dataset:
 
319
  name: Image Edit Instruction
320
+ type: iei
321
  metrics:
322
+ - type: accuracy
 
323
  value: 17.1
324
+ name: accuracy
325
  verified: true
326
  - task:
327
  type: multimodal
328
  dataset:
 
329
  name: MI-VQA
330
+ type: mi-vqa
331
  metrics:
332
+ - type: accuracy
 
333
  value: 48.7
334
+ name: accuracy
335
  verified: true
336
  - task:
337
  type: multimodal
338
  dataset:
 
339
  name: NLVR2
340
+ type: nlvr2
341
  metrics:
342
+ - type: accuracy
 
343
  value: 63.4
344
+ name: accuracy
345
  verified: true
346
  - task:
347
  type: multimodal
348
  dataset:
 
349
  name: Puzzle
350
+ type: puzzle
351
  metrics:
352
+ - type: accuracy
 
353
  value: 35.4
354
+ name: accuracy
355
  verified: true
356
  - task:
357
  type: multimodal
358
  dataset:
 
359
  name: Q-Bench
360
+ type: q-bench
361
  metrics:
362
+ - type: accuracy
 
363
  value: 48.8
364
+ name: accuracy
365
  verified: true
366
  - task:
367
  type: multimodal
368
  dataset:
 
369
  name: Spot-Diff
370
+ type: spot-diff
371
  metrics:
372
+ - type: accuracy
 
373
  value: 36.4
374
+ name: accuracy
375
  verified: true
376
  - task:
377
  type: multimodal
378
  dataset:
 
379
  name: TR-VQA
380
+ type: tr-vqa
381
  metrics:
382
+ - type: accuracy
 
383
  value: 65.0
384
+ name: accuracy
385
  verified: true
386
  - task:
387
  type: multimodal
388
  dataset:
 
389
  name: VST
390
+ type: vst
391
  metrics:
392
+ - type: accuracy
 
393
  value: 29.8
394
+ name: accuracy
395
  verified: true
396
  - task:
397
  type: multimodal
398
  dataset:
 
399
  name: ScanNet-Chat
400
+ type: scannet-chat
401
  metrics:
402
+ - type: accuracy
403
+ value: 60.0
404
+ name: accuracy
405
  verified: true
406
  - task:
407
  type: multimodal
408
  dataset:
 
409
  name: ScanNet-TD
410
+ type: scannet-td
411
  metrics:
412
+ - type: accuracy
413
+ value: 48.0
414
+ name: accuracy
415
  verified: true
416
  - task:
417
  type: multimodal
418
  dataset:
 
419
  name: ScanQA
420
+ type: scanqa
421
  metrics:
422
+ - type: accuracy
423
+ value: 29.4
424
+ name: accuracy
425
  verified: true
426
  - task:
427
  type: multimodal
428
  dataset:
 
429
  name: ALFRED
430
+ type: alfred
431
  metrics:
432
+ - type: accuracy
433
+ value: 62.2
434
+ name: accuracy
435
  verified: true
436
  - task:
437
  type: multimodal
438
  dataset:
 
439
  name: nuScenesVQA
440
+ type: nuscenesvqa
441
  metrics:
442
+ - type: accuracy
443
+ value: 70.5
444
+ name: accuracy
445
  verified: true
446
  - task:
447
  type: multimodal
448
  dataset:
 
449
  name: BLINK
450
+ type: blink
451
  metrics:
452
+ - type: accuracy
 
453
  value: 52.1
454
+ name: accuracy
455
  verified: true
456
  - task:
457
  type: multimodal
458
  dataset:
 
459
  name: Mantis
460
+ type: mantis
461
  metrics:
462
+ - type: accuracy
 
463
  value: 39.6
464
+ name: accuracy
465
  verified: true
466
  - task:
467
  type: multimodal
468
  dataset:
 
469
  name: MathVerse-mv
470
+ type: mathverse-mv
471
  metrics:
472
+ - type: accuracy
 
473
  value: 60.0
474
+ name: accuracy
475
  verified: true
476
  - task:
477
  type: multimodal
478
  dataset:
 
479
  name: MuirBench
480
+ type: muirbench
481
  metrics:
482
+ - type: accuracy
 
483
  value: 25.5
484
+ name: accuracy
485
  verified: true
486
  - task:
487
  type: multimodal
488
  dataset:
 
489
  name: SciVerse-mv
490
+ type: sciverse-mv
491
  metrics:
492
+ - type: accuracy
 
493
  value: 29.1
494
+ name: accuracy
495
+ verified: true
496
  ---
497
 
498
 
added_tokens.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "<|endoftext|>": 151643,
3
  "<|im_end|>": 151645,
4
  "<|im_start|>": 151644
 
1
  {
2
+ "<image>": 151646,
3
  "<|endoftext|>": 151643,
4
  "<|im_end|>": 151645,
5
  "<|im_start|>": 151644
tokenizer.json CHANGED
@@ -29,6 +29,15 @@
29
  "rstrip": false,
30
  "normalized": false,
31
  "special": true
 
 
 
 
 
 
 
 
 
32
  }
33
  ],
34
  "normalizer": {
@@ -73,6 +82,7 @@
73
  "end_of_word_suffix": "",
74
  "fuse_unk": false,
75
  "byte_fallback": false,
 
76
  "vocab": {
77
  "!": 0,
78
  "\"": 1,
 
29
  "rstrip": false,
30
  "normalized": false,
31
  "special": true
32
+ },
33
+ {
34
+ "id": 151646,
35
+ "content": "<image>",
36
+ "single_word": false,
37
+ "lstrip": false,
38
+ "rstrip": false,
39
+ "normalized": false,
40
+ "special": true
41
  }
42
  ],
43
  "normalizer": {
 
82
  "end_of_word_suffix": "",
83
  "fuse_unk": false,
84
  "byte_fallback": false,
85
+ "ignore_merges": false,
86
  "vocab": {
87
  "!": 0,
88
  "\"": 1,
tokenizer_config.json CHANGED
@@ -24,6 +24,14 @@
24
  "rstrip": false,
25
  "single_word": false,
26
  "special": true
 
 
 
 
 
 
 
 
27
  }
28
  },
29
  "additional_special_tokens": [
 
24
  "rstrip": false,
25
  "single_word": false,
26
  "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
  }
36
  },
37
  "additional_special_tokens": [