cheesyFishes commited on
Commit
6908857
·
verified ·
1 Parent(s): 33a911a

add back sentence-transformers files

Browse files
Files changed (3) hide show
  1. config_sentence_transformers.json +13 -0
  2. custom_st.py +153 -0
  3. modules.json +19 -0
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts":{
8
+ "image": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>",
9
+ "query": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
custom_st.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import json
3
+ import os
4
+ import math
5
+ from io import BytesIO
6
+ from typing import Any, Dict, List, Literal, Optional, Union
7
+
8
+ import requests
9
+ import torch
10
+ from PIL import Image
11
+ from torch import nn
12
+ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
13
+
14
+ class Transformer(nn.Module):
15
+ save_in_root: bool = True
16
+
17
+ def __init__(
18
+ self,
19
+ model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
20
+ processor_name_or_path: Optional[str] = None,
21
+ max_pixels: int = 768 * 28 * 28,
22
+ min_pixels: int = 1 * 28 * 28,
23
+ dimension: int = 2048,
24
+ cache_dir: Optional[str] = None,
25
+ device: str = 'cuda:0',
26
+ **kwargs,
27
+ ) -> None:
28
+ super(Transformer, self).__init__()
29
+
30
+ self.device = device
31
+ self.dimension = dimension
32
+ self.max_pixels = max_pixels
33
+ self.min_pixels = min_pixels
34
+
35
+ # Try to use flash attention if available, fallback to default attention if not
36
+ try:
37
+ self.model = Qwen2VLForConditionalGeneration.from_pretrained(
38
+ model_name_or_path,
39
+ attn_implementation="flash_attention_2",
40
+ torch_dtype=torch.bfloat16,
41
+ device_map=device,
42
+ cache_dir=cache_dir,
43
+ **kwargs
44
+ ).eval()
45
+ except (ImportError, ValueError) as e:
46
+ print(f"Flash attention not available, falling back to default attention: {e}")
47
+ self.model = Qwen2VLForConditionalGeneration.from_pretrained(
48
+ model_name_or_path,
49
+ torch_dtype=torch.bfloat16,
50
+ device_map=device,
51
+ cache_dir=cache_dir,
52
+ **kwargs
53
+ ).eval()
54
+
55
+ # Initialize processor
56
+ self.processor = AutoProcessor.from_pretrained(
57
+ processor_name_or_path or model_name_or_path,
58
+ min_pixels=min_pixels,
59
+ max_pixels=max_pixels,
60
+ cache_dir=cache_dir
61
+ )
62
+
63
+ self.model.padding_side = "left"
64
+ self.processor.tokenizer.padding_side = "left"
65
+
66
+ self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
67
+ self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
68
+
69
+ def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
70
+ h_bar = max(28, self._round_by_factor(height, 28))
71
+ w_bar = max(28, self._round_by_factor(width, 28))
72
+ if h_bar * w_bar > self.max_pixels:
73
+ beta = math.sqrt((height * width) / self.max_pixels)
74
+ h_bar = self._floor_by_factor(height / beta, 28)
75
+ w_bar = self._floor_by_factor(width / beta, 28)
76
+ elif h_bar * w_bar < self.min_pixels:
77
+ beta = math.sqrt(self.min_pixels / (height * width))
78
+ h_bar = self._ceil_by_factor(height * beta, 28)
79
+ w_bar = self._ceil_by_factor(width * beta, 28)
80
+ return w_bar, h_bar
81
+
82
+ @staticmethod
83
+ def _round_by_factor(number: float, factor: int) -> int:
84
+ return round(number / factor) * factor
85
+
86
+ @staticmethod
87
+ def _ceil_by_factor(number: float, factor: int) -> int:
88
+ return math.ceil(number / factor) * factor
89
+
90
+ @staticmethod
91
+ def _floor_by_factor(number: float, factor: int) -> int:
92
+ return math.floor(number / factor) * factor
93
+
94
+ def _resize_image(self, image: Image.Image) -> Image.Image:
95
+ new_size = self._smart_resize(image.height, image.width)
96
+ return image.resize(new_size)
97
+
98
+ @staticmethod
99
+ def _decode_data_image(data_image_str: str) -> Image.Image:
100
+ header, data = data_image_str.split(',', 1)
101
+ image_data = base64.b64decode(data)
102
+ return Image.open(BytesIO(image_data))
103
+
104
+ def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
105
+ processed_texts = []
106
+ processed_images = []
107
+ dummy_image = Image.new('RGB', (56, 56))
108
+
109
+ for sample in texts:
110
+ if isinstance(sample, str):
111
+ processed_texts.append(self.query_prompt % sample)
112
+ processed_images.append(dummy_image)
113
+ elif isinstance(sample, Image.Image):
114
+ processed_texts.append(self.document_prompt)
115
+ processed_images.append(self._resize_image(sample))
116
+
117
+ return processed_texts, processed_images
118
+
119
+ def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
120
+ cache_position = torch.arange(0, features['input_ids'].shape[0])
121
+ inputs = self.model.prepare_inputs_for_generation(
122
+ **features, cache_position=cache_position, use_cache=False
123
+ )
124
+
125
+ with torch.no_grad():
126
+ output = self.model(
127
+ **inputs,
128
+ return_dict=True,
129
+ output_hidden_states=True
130
+ )
131
+
132
+ embeddings = output.hidden_states[-1][:, -1]
133
+ features['sentence_embedding'] = torch.nn.functional.normalize(
134
+ embeddings[:, :self.dimension], p=2, dim=-1
135
+ )
136
+ return features
137
+
138
+ def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
139
+ processed_texts, processed_images = self._process_input(texts)
140
+
141
+ inputs = self.processor(
142
+ text=processed_texts,
143
+ images=processed_images,
144
+ videos=None,
145
+ padding=padding,
146
+ return_tensors='pt'
147
+ )
148
+
149
+ return {k: v.to(self.device) for k, v in inputs.items()}
150
+
151
+ def save(self, output_path: str, safe_serialization: bool = True) -> None:
152
+ self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
153
+ self.processor.save_pretrained(output_path)
modules.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "transformer",
5
+ "path": "",
6
+ "type": "custom_st.Transformer",
7
+ "model_name_or_path": "llamaindex/vdr-2b-multi-v1",
8
+ "dimension": 2048,
9
+ "max_pixels": 602112,
10
+ "min_pixels": 784,
11
+ "device": "cuda:0"
12
+ },
13
+ {
14
+ "idx": 1,
15
+ "name": "normalizer",
16
+ "path": "1_Normalize",
17
+ "type": "sentence_transformers.models.Normalize"
18
+ }
19
+ ]