Image-Text-to-Text
sentence-transformers
Safetensors
Transformers
qwen2_vl
Qwen2-VL
conversational
marco commited on
Commit
4474bfe
·
verified ·
1 Parent(s): 6f270fc

Delete .ipynb_checkpoints/README-checkpoint.md

Browse files
.ipynb_checkpoints/README-checkpoint.md DELETED
@@ -1,213 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- - it
6
- - fr
7
- - de
8
- - es
9
- base_model:
10
- - MrLight/dse-qwen2-2b-mrl-v1
11
- tags:
12
- - transformers
13
- - Qwen2-VL
14
- ---
15
-
16
- # vdr-2b-multi-v1
17
-
18
- ![](cover.png)
19
-
20
- vdr-2b-multi-v1 is a multilingual model designed for visual document retrieval across multiple languages and domains. This model is designed to encode document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking...
21
-
22
-
23
- - **Trained on 🇮🇹 Italian, 🇪🇸 Spanish, 🇬🇧 English, 🇫🇷 French and 🇩🇪 German:** together they form a new large, open-source, multilingual training dataset of 500k high-quality samples.
24
-
25
- - **Low VRAM and Faster Inference**: english model achieves better results on synthetic vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage.
26
-
27
- - **Cross-lingual Retrieval**: substantially better on real-world scenarios. For example, this allows for searching german documents with italian queries.
28
-
29
- - **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.
30
-
31
- # Usage
32
-
33
- **Initialize model and processor**
34
-
35
- ```python
36
- from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
37
- from PIL import Image
38
- import torch
39
- import math
40
-
41
- # more pixels -> better embeddings -> more VRAM -> slower inference
42
- # From my experience, 768 image patches is the right spot for compute efficient embeddings.
43
- max_pixels = 768 * 28 * 28
44
- min_pixels = 1 * 28 * 28
45
-
46
- # Load the embedding model and processor
47
- model = Qwen2VLForConditionalGeneration.from_pretrained(
48
- 'llamaindex/vdr-2b-multi-v1',
49
- attn_implementation="flash_attention_2",
50
- torch_dtype=torch.bfloat16,
51
- device_map="cuda:0"
52
- ).eval()
53
-
54
- processor = AutoProcessor.from_pretrained(
55
- 'llamaindex/vdr-2b-multi-v1',
56
- min_pixels=min_pixels,
57
- max_pixels=max_pixels
58
- )
59
-
60
- model.padding_side = "left"
61
- processor.tokenizer.padding_side = "left"
62
-
63
- document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
64
-
65
- query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
66
- ```
67
-
68
- **Encode queries**
69
-
70
- ```python
71
- def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
72
- """
73
- Encode a list of queries into a tensor of embeddings.
74
-
75
- Args:
76
- queries: A list of strings, each representing a query.
77
- dimension: The desired dimension of the output embeddings.
78
-
79
- Returns:
80
- A tensor of shape (num_queries, dimension) containing the encoded queries.
81
- """
82
-
83
- dummy_image = Image.new('RGB', (56, 56))
84
- inputs = processor(
85
- text=[query_prompt % x for x in queries],
86
- images=[dummy_image for _ in queries],
87
- videos=None,
88
- padding='longest',
89
- return_tensors='pt'
90
- ).to('cuda:0')
91
-
92
- cache_position = torch.arange(0, len(queries))
93
- inputs = model.prepare_inputs_for_generation(
94
- **inputs, cache_position=cache_position, use_cache=False)
95
-
96
- with torch.no_grad():
97
- output = self.model(
98
- **inputs,
99
- return_dict=True,
100
- output_hidden_states=True
101
- )
102
-
103
- embeddings = output.hidden_states[-1][:, -1]
104
- return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
105
- ```
106
-
107
- **Encode documents**
108
- ```python
109
- def round_by_factor(number: float, factor: int) -> int:
110
- return round(number / factor) * factor
111
-
112
- def ceil_by_factor(number: float, factor: int) -> int:
113
- return math.ceil(number / factor) * factor
114
-
115
- def floor_by_factor(number: float, factor: int) -> int:
116
- return math.floor(number / factor) * factor
117
-
118
- def smart_resize(height: int, width: int) -> tuple[int, int]:
119
- h_bar = max(28, round_by_factor(height, 28))
120
- w_bar = max(28, round_by_factor(width, 28))
121
- if h_bar * w_bar > max_pixels:
122
- beta = math.sqrt((height * width) / max_pixels)
123
- h_bar = floor_by_factor(height / beta, 28)
124
- w_bar = floor_by_factor(width / beta, 28)
125
- elif h_bar * w_bar < min_pixels:
126
- beta = math.sqrt(min_pixels / (height * width))
127
- h_bar = ceil_by_factor(height * beta, 28)
128
- w_bar = ceil_by_factor(width * beta, 28)
129
- return w_bar, h_bar
130
-
131
- def resize(image: Image.Image):
132
- new_size = smart_resize(image.height, image.width)
133
- return image.resize(new_size)
134
-
135
- def encode_documents(documents: list[Image.Image], dimension: int):
136
- """
137
- Encode a list of images into a tensor of embeddings.
138
-
139
- Args:
140
- documents: A list of PIL Image objects.
141
- dimension: The desired dimension of the output embeddings.
142
-
143
- Returns:
144
- A tensor of shape (num_documents, dimension) containing the encoded images.
145
- """
146
-
147
- inputs = processor(
148
- text=[document_prompt] * len(documents),
149
- images=[resize(x) for x in documents],
150
- videos=None,
151
- padding='longest',
152
- return_tensors='pt'
153
- ).to('cuda:0')
154
-
155
- cache_position = torch.arange(0, len(queries))
156
- inputs = model.prepare_inputs_for_generation(
157
- **inputs, cache_position=cache_position, use_cache=False)
158
-
159
- with torch.no_grad():
160
- output = self.model(
161
- **inputs,
162
- return_dict=True,
163
- output_hidden_states=True
164
- )
165
-
166
- embeddings = output.hidden_states[-1][:, -1]
167
- return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
168
- ```
169
-
170
- # Training
171
-
172
- The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) dataset that consinsists of 500k high quality, multilingual query image pairs. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
173
-
174
- # Results
175
-
176
- The model has been evaluated on the Vidore benchmark and on custom-built evaluation sets that allow testing its multilingual capabilities on text-only, visual-only and mixed page screenshots. The evaluation dataset is publicly available [here on HuggingFace](https://huggingface.co/datasets/llamaindex/vdr-multilingual-test).
177
-
178
- All evaluations are performed by calculating **NDCG@5** scores using **1536 dimensions** vectors and an image resolution that can be represented with **maximum 768 tokens**.
179
-
180
- | | Avg | Italian (text) | Italian (visual) | Italian (mix) |
181
- |---------------------|----------|----------------|------------------|---------------|
182
- | dse-qwen2-2b-mrl-v1 | 95.1 | 95.1 | 94 | 96.2 |
183
- | vdr-2b-multi-v1 | **97.0** | **96.4** | **96.3** | **98.4** |
184
- | | **+2%** | | | |
185
-
186
- | | Avg | French (text) | French (visual) | French (mix) |
187
- |---------------------|-----------|---------------|-----------------|--------------|
188
- | dse-qwen2-2b-mrl-v1 | 93.5 | 94.7 | 90.8 | 95.1 |
189
- | vdr-2b-multi-v1 | **95.6** | **95.6** | **93.3** | **97.9** |
190
- | | **+2.2%** | | | |
191
-
192
- | | Avg | Spanish (text) | Spanish (visual) | Spanish (mix) |
193
- |---------------------|-----------|----------------|------------------|---------------|
194
- | dse-qwen2-2b-mrl-v1 | 96.7 | 97.2 | 94.7 | 98.2 |
195
- | vdr-2b-multi-v1 | **98.1** | **98.3** | **96.9** | **99.1** |
196
- | | **+1.4%** | | | |
197
-
198
- | | Avg | German (text) | German (visual) | German (mix) |
199
- |---------------------|-----------|---------------|-----------------|--------------|
200
- | dse-qwen2-2b-mrl-v1 | 93.0 | 93.4 | 90 | 95.5 |
201
- | vdr-2b-multi-v1 | **96.2** | **94.8** | **95.7** | **98.1** |
202
- | | **+3.4%** | | | |
203
-
204
- | | Avg | English (text) | English (visual) | English (mix) |
205
- |---------------------|-----------|----------------|------------------|---------------|
206
- | dse-qwen2-2b-mrl-v1 | 98.0 | **98.3** | 98.5 | 97.1 |
207
- | vdr-2b-multi-v1 | **98.1** | 97.9 | **99.1** | **97.3** |
208
- | | **+0.1%** | | | |
209
-
210
- | | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** |
211
- |--------------------:|---------:|-----------------:|---------------:|---------------:|-----------:|-----------:|-----------:|------------:|-----------:|------------:|-------------:|
212
- | dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | **95.7** | **96.9** | **92** | 98.2 | 56.3 | **85.2** | **53.9** | **87.5** | 90.3 |
213
- | vdr-2b-multi-v1 | **84.0** | **82.4** | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** |