Image-Text-to-Text
sentence-transformers
Safetensors
Transformers
qwen2_vl
Qwen2-VL
conversational
File size: 7,661 Bytes
6187d4b
 
 
 
 
 
 
 
 
 
 
6a23f44
6187d4b
 
 
 
 
 
 
 
 
 
 
6a23f44
1df3a64
 
c43084e
 
6187d4b
c43084e
0da786d
6187d4b
 
 
0da786d
 
 
 
 
6187d4b
 
 
 
 
6a23f44
6187d4b
1df3a64
 
 
 
 
 
 
 
 
 
 
6a23f44
c43084e
 
 
 
 
6187d4b
 
6a23f44
 
1df3a64
6187d4b
 
6a23f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6187d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a23f44
 
6187d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a23f44
 
 
 
fdba9e3
 
6a23f44
fdba9e3
 
 
6a23f44
fdba9e3
 
6a23f44
 
fdba9e3
 
6a23f44
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union

import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

class Transformer(nn.Module):
    save_in_root: bool = True
    
    def __init__(
        self,
        model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
        processor_name_or_path: Optional[str] = None,
        max_pixels: int = 768 * 28 * 28,
        min_pixels: int = 1 * 28 * 28,
        dimension: int = 2048,
        max_seq_length: Optional[int] = None,
        model_args: Optional[Dict[str, Any]] = None,
        processor_args: Optional[Dict[str, Any]] = None,
        tokenizer_args: Optional[Dict[str, Any]] = None,
        config_args: Optional[Dict[str, Any]] = None,
        cache_dir: Optional[str] = None,
        device: str = 'cpu',
        backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
        **kwargs,
    ) -> None:
        super(Transformer, self).__init__()

        if backend != 'torch':
            raise ValueError(
                f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
            )
        
        self.device = device
        self.dimension = dimension
        self.max_pixels = max_pixels
        self.min_pixels = min_pixels
        self.max_seq_length = max_seq_length
        
        # Handle args
        model_kwargs = model_args or {}
        model_kwargs.update(kwargs)

        processor_kwargs = processor_args or {}
        processor_kwargs.update({
            'min_pixels': min_pixels,
            'max_pixels': max_pixels,
            'cache_dir': cache_dir
        })
        
        # Initialize model
        self.model = Qwen2VLForConditionalGeneration.from_pretrained(
            model_name_or_path,
            cache_dir=cache_dir,
            **model_kwargs
        ).eval()

        # Initialize processor
        self.processor = AutoProcessor.from_pretrained(
            processor_name_or_path or model_name_or_path,
            **processor_kwargs
        )

        # Set padding sides
        self.model.padding_side = "left"
        self.processor.tokenizer.padding_side = "left"

        # Store prompts
        self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
        self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"

        # Try to infer max_seq_length if not provided
        if self.max_seq_length is None:
            if (
                hasattr(self.model, 'config') 
                and hasattr(self.model.config, 'max_position_embeddings')
                and hasattr(self.processor.tokenizer, 'model_max_length')
            ):
                self.max_seq_length = min(
                    self.model.config.max_position_embeddings,
                    self.processor.tokenizer.model_max_length,
                )

    def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
        h_bar = max(28, self._round_by_factor(height, 28))
        w_bar = max(28, self._round_by_factor(width, 28))
        if h_bar * w_bar > self.max_pixels:
            beta = math.sqrt((height * width) / self.max_pixels)
            h_bar = self._floor_by_factor(height / beta, 28)
            w_bar = self._floor_by_factor(width / beta, 28)
        elif h_bar * w_bar < self.min_pixels:
            beta = math.sqrt(self.min_pixels / (height * width))
            h_bar = self._ceil_by_factor(height * beta, 28)
            w_bar = self._ceil_by_factor(width * beta, 28)
        return w_bar, h_bar

    @staticmethod
    def _round_by_factor(number: float, factor: int) -> int:
        return round(number / factor) * factor

    @staticmethod
    def _ceil_by_factor(number: float, factor: int) -> int:
        return math.ceil(number / factor) * factor

    @staticmethod
    def _floor_by_factor(number: float, factor: int) -> int:
        return math.floor(number / factor) * factor

    def _resize_image(self, image: Image.Image) -> Image.Image:
        new_size = self._smart_resize(image.height, image.width)
        return image.resize(new_size)

    @staticmethod
    def _decode_data_image(data_image_str: str) -> Image.Image:
        header, data = data_image_str.split(',', 1)
        image_data = base64.b64decode(data)
        return Image.open(BytesIO(image_data))

    def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
        processed_texts = []
        processed_images = []
        dummy_image = Image.new('RGB', (56, 56))

        for sample in texts:
            if isinstance(sample, str):
                processed_texts.append(self.query_prompt % sample)
                processed_images.append(dummy_image)
            elif isinstance(sample, Image.Image):
                processed_texts.append(self.document_prompt)
                processed_images.append(self._resize_image(sample))

        return processed_texts, processed_images

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        cache_position = torch.arange(0, features['input_ids'].shape[0])
        inputs = self.model.prepare_inputs_for_generation(
            **features, cache_position=cache_position, use_cache=False
        )

        with torch.no_grad():
            output = self.model(
                **inputs,
                return_dict=True,
                output_hidden_states=True
            )

        embeddings = output.hidden_states[-1][:, -1]
        features['sentence_embedding'] = torch.nn.functional.normalize(
            embeddings[:, :self.dimension], p=2, dim=-1
        )
        return features

    def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
        processed_texts, processed_images = self._process_input(texts)
        
        inputs = self.processor(
            text=processed_texts,
            images=processed_images,
            videos=None,
            padding=padding,
            return_tensors='pt'
        )
        
        return {k: v.to(self.device) for k, v in inputs.items()}

    def save(self, output_path: str, safe_serialization: bool = True) -> None:
        """Save the model, tokenizer and processor to the given path."""
        self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
        self.processor.save_pretrained(output_path)

        # Save the configuration
        config = {
            'model_name_or_path': output_path,
            'max_pixels': self.max_pixels,
            'min_pixels': self.min_pixels,
            'dimension': self.dimension,
            'max_seq_length': self.max_seq_length,
        }
        
        config_path = os.path.join(output_path, 'sentence_bert_config.json')
        with open(config_path, 'w') as f:
            json.dump(config, f)

    @staticmethod
    def load(input_path: str) -> 'Transformer':
        """Load a saved model from the given path."""
        # Load configuration
        config_path = os.path.join(input_path, 'sentence_bert_config.json')
        if os.path.exists(config_path):
            with open(config_path) as f:
                config = json.load(f)
        else:
            config = {'model_name_or_path': input_path}

        return Transformer(**config)