|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
CausalLMOutput, |
|
SequenceClassifierOutput |
|
) |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from .rita_configuration import RITAConfig |
|
import torch.nn.functional as F |
|
logger = logging.get_logger(__name__) |
|
|
|
@torch.jit.script |
|
def RITA_gelu(hidden_states): |
|
return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states))) |
|
|
|
class RITAGELU(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, hidden_states): |
|
return RITA_gelu(hidden_states) |
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.d_model % config.num_heads == 0 |
|
|
|
self.d_model = config.d_model |
|
self.num_heads = config.num_heads |
|
self.max_seq_len = config.max_seq_len |
|
|
|
head_dim = self.d_model // self.num_heads |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim)) |
|
self.register_buffer('inv_freq', inv_freq) |
|
self.seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
|
|
def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor: |
|
seq_len = x.shape[seq_dim] |
|
if seq_len != self.seq_len_cached: |
|
self.seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
return self.cos_cached, self.sin_cached |
|
|
|
def apply_rotary_pos_emb(self, q, k, cos, sin): |
|
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
"""Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_. |
|
modified to use rotary embeddings. |
|
|
|
Parameters |
|
---------- |
|
d_model: int, |
|
total dimension of the model. |
|
num_heads: int, |
|
number of parallel attention heads. |
|
num_layers: int, |
|
number of layers in the model, used for the Megatron-like init. |
|
rotaty_embedding: Optional[Block], default None, |
|
a RotaryEmbedding Block to add positionnal information in Queries and Keys |
|
dropout: float, default 0.1, |
|
amount of dropout on the attention weights. |
|
sigma: float, default 0.02, |
|
standard deviation used for the init. |
|
trainable: bool, default True, |
|
if False, the Module parameters will be hidden from the optimizer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
num_heads: int, |
|
num_layers: int, |
|
rotary_embedding= None, |
|
dropout: float = 0.1, |
|
sigma=0.02, |
|
use_cache: bool = False, |
|
bias=True, |
|
): |
|
super().__init__() |
|
assert d_model % num_heads == 0 |
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = self.d_model // self.num_heads |
|
self.num_layers = num_layers |
|
self.dropout = dropout |
|
self.sigma = sigma |
|
self.bias = bias |
|
|
|
|
|
self.key = nn.Linear(d_model, d_model, bias=bias) |
|
self.query = nn.Linear(d_model, d_model, bias=bias) |
|
self.value = nn.Linear(d_model, d_model, bias=bias) |
|
|
|
self.attn_drop = nn.Dropout(dropout) |
|
self.resid_drop = nn.Dropout(dropout) |
|
|
|
self.proj = nn.Linear(d_model, d_model, bias=bias) |
|
|
|
self.rotary_embedding = rotary_embedding |
|
self.layer_id = None |
|
self.use_cache = use_cache |
|
self.qkv = None |
|
self.bias = bias |
|
|
|
def forward( |
|
self, |
|
x, |
|
causal_mask: Optional[torch.BoolTensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
|
|
N, L, D = x.size() |
|
|
|
|
|
k = ( |
|
self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2) |
|
) |
|
q = ( |
|
self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2) |
|
) |
|
v = ( |
|
self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2) |
|
) |
|
|
|
if self.rotary_embedding is not None: |
|
cos, sin = self.rotary_embedding(x) |
|
q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
|
|
if causal_mask is not None: |
|
att[:,:,-L:, -L: ].masked_fill_(causal_mask.view(1, 1, L, L), float("-inf")) |
|
|
|
att = ( |
|
att.transpose(0, 2) |
|
.masked_fill(attention_mask.view(1, 1, N, L)==0, float("-inf")) |
|
.transpose(0, 2) |
|
if attention_mask is not None |
|
else att |
|
) |
|
|
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_drop(att) |
|
y = att @ v |
|
y = ( |
|
y.transpose(1, 2).contiguous().view(N, L, D) |
|
) |
|
|
|
|
|
y = self.resid_drop(self.proj(y)) |
|
return y |
|
|
|
class DecoderLayer(nn.Module): |
|
"""Transformer block containing the self-attention module and the feedfoward module.""" |
|
|
|
def __init__( |
|
self, config |
|
): |
|
super().__init__() |
|
self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config)) |
|
self.attn_norm = nn.LayerNorm(config.d_model) |
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(config.d_model, config.d_feedforward, bias=True), |
|
RITAGELU(), |
|
nn.Linear(config.d_feedforward, config.d_model, bias=True), |
|
) |
|
self.mlp_norm = nn.LayerNorm(config.d_model) |
|
self.mlp_dropout = nn.Dropout(config.dropout) |
|
|
|
def forward( |
|
self, |
|
x: torch.FloatTensor, |
|
causal_mask: torch.BoolTensor, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
) -> torch.FloatTensor: |
|
y = self.attn_norm(x) |
|
y = self.self_attention(y, causal_mask=causal_mask, attention_mask=attention_mask) |
|
x = x + self.attn_dropout(y) |
|
|
|
y = self.mlp_norm(x) |
|
y = self.mlp(y) |
|
x = x + self.mlp_dropout(y) |
|
return x |
|
|
|
class RITAModel(PreTrainedModel): |
|
config_class = RITAConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = False |
|
|
|
def __init__( |
|
self, |
|
config |
|
): |
|
super().__init__(config) |
|
self.embedding = nn.Embedding(config.vocab_size, config.d_model) |
|
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)]) |
|
self.final_norm = nn.LayerNorm(config.d_model) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
causal_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_causal_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None |
|
) -> torch.FloatTensor: |
|
if inputs_embeds == None: |
|
x = self.embedding(input_ids) |
|
else: |
|
x = inputs_embeds |
|
if causal_mask == None: |
|
causal_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device) |
|
for layer in self.layers: |
|
x = layer(x, causal_mask=causal_mask, attention_mask=attention_mask) |
|
x = self.final_norm(x) |
|
|
|
return BaseModelOutput( |
|
hidden_states=x, |
|
) |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.embedding |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embedding = new_embeddings |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class RITAModelForCausalLM(PreTrainedModel): |
|
config_class = RITAConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = False |
|
|
|
def __init__( |
|
self, |
|
config |
|
): |
|
super().__init__(config) |
|
self.transformer = RITAModel(config) |
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
causal_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_causal_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None |
|
) -> torch.FloatTensor: |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
causal_mask=causal_mask, |
|
attention_mask = attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
logits = self.lm_head(transformer_outputs.hidden_states) |
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
return CausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
) |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.transformer.embedding |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.transformer.embedding = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, lm_head): |
|
self.lm_head = lm_head |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class RITAModelForSequenceClassification(PreTrainedModel): |
|
config_class = RITAConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = False |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = RITAModel(config) |
|
self.score = nn.Linear(config.d_model, self.num_labels, bias=False) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
causal_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
causal_mask=causal_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
assert ( |
|
self.config.pad_token_id is not None or batch_size == 1 |
|
), "Cannot handle batch sizes > 1 if no padding token is defined." |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=pooled_logits, |
|
) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|