File size: 5,800 Bytes
97b0b8a 9b4592f 97b0b8a 9b4592f 97b0b8a 93243ff 2003cff 97b0b8a df6d08e 2eed695 97b0b8a 2eed695 259d4e4 2eed695 259d4e4 2eed695 259d4e4 97b0b8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
language:
- pt
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- pt
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
license: apache-2.0
model-index:
- name: wav2vec2-xls-r-pt-cv7-from-bp400h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: pt
metrics:
- name: Test WER
type: wer
value: 12.13
- name: Test CER
type: cer
value: 3.68
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sv
metrics:
- name: Test WER
type: wer
value: 28.23
- name: Test CER
type: cer
value: 12.58
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: pt
metrics:
- name: Test WER
type: wer
value: 26.58
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: pt
metrics:
- name: Test WER
type: wer
value: 26.86
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-pt-cv7-from-bp400h
This model is a fine-tuned version of [lgris/bp_400h_xlsr2_300M](https://huggingface.co./lgris/bp_400h_xlsr2_300M) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1535
- Wer: 0.1254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4991 | 0.13 | 100 | 0.1774 | 0.1464 |
| 0.4655 | 0.26 | 200 | 0.1884 | 0.1568 |
| 0.4689 | 0.39 | 300 | 0.2282 | 0.1672 |
| 0.4662 | 0.52 | 400 | 0.1997 | 0.1584 |
| 0.4592 | 0.65 | 500 | 0.1989 | 0.1663 |
| 0.4533 | 0.78 | 600 | 0.2004 | 0.1698 |
| 0.4391 | 0.91 | 700 | 0.1888 | 0.1642 |
| 0.4655 | 1.04 | 800 | 0.1921 | 0.1624 |
| 0.4138 | 1.17 | 900 | 0.1950 | 0.1602 |
| 0.374 | 1.3 | 1000 | 0.2077 | 0.1658 |
| 0.4064 | 1.43 | 1100 | 0.1945 | 0.1596 |
| 0.3922 | 1.56 | 1200 | 0.2069 | 0.1665 |
| 0.4226 | 1.69 | 1300 | 0.1962 | 0.1573 |
| 0.3974 | 1.82 | 1400 | 0.1919 | 0.1553 |
| 0.3631 | 1.95 | 1500 | 0.1854 | 0.1573 |
| 0.3797 | 2.08 | 1600 | 0.1902 | 0.1550 |
| 0.3287 | 2.21 | 1700 | 0.1926 | 0.1598 |
| 0.3568 | 2.34 | 1800 | 0.1888 | 0.1534 |
| 0.3415 | 2.47 | 1900 | 0.1834 | 0.1502 |
| 0.3545 | 2.6 | 2000 | 0.1906 | 0.1560 |
| 0.3344 | 2.73 | 2100 | 0.1804 | 0.1524 |
| 0.3308 | 2.86 | 2200 | 0.1741 | 0.1485 |
| 0.344 | 2.99 | 2300 | 0.1787 | 0.1455 |
| 0.309 | 3.12 | 2400 | 0.1773 | 0.1448 |
| 0.312 | 3.25 | 2500 | 0.1738 | 0.1440 |
| 0.3066 | 3.38 | 2600 | 0.1727 | 0.1417 |
| 0.2999 | 3.51 | 2700 | 0.1692 | 0.1436 |
| 0.2985 | 3.64 | 2800 | 0.1732 | 0.1430 |
| 0.3058 | 3.77 | 2900 | 0.1754 | 0.1402 |
| 0.2943 | 3.9 | 3000 | 0.1691 | 0.1379 |
| 0.2813 | 4.03 | 3100 | 0.1754 | 0.1376 |
| 0.2733 | 4.16 | 3200 | 0.1639 | 0.1363 |
| 0.2592 | 4.29 | 3300 | 0.1675 | 0.1349 |
| 0.2697 | 4.42 | 3400 | 0.1618 | 0.1360 |
| 0.2538 | 4.55 | 3500 | 0.1658 | 0.1348 |
| 0.2746 | 4.67 | 3600 | 0.1674 | 0.1325 |
| 0.2655 | 4.8 | 3700 | 0.1655 | 0.1319 |
| 0.2745 | 4.93 | 3800 | 0.1665 | 0.1316 |
| 0.2617 | 5.06 | 3900 | 0.1600 | 0.1311 |
| 0.2674 | 5.19 | 4000 | 0.1623 | 0.1311 |
| 0.237 | 5.32 | 4100 | 0.1591 | 0.1315 |
| 0.2669 | 5.45 | 4200 | 0.1584 | 0.1295 |
| 0.2476 | 5.58 | 4300 | 0.1572 | 0.1285 |
| 0.2445 | 5.71 | 4400 | 0.1580 | 0.1271 |
| 0.2207 | 5.84 | 4500 | 0.1567 | 0.1269 |
| 0.2289 | 5.97 | 4600 | 0.1536 | 0.1260 |
| 0.2438 | 6.1 | 4700 | 0.1530 | 0.1260 |
| 0.227 | 6.23 | 4800 | 0.1544 | 0.1249 |
| 0.2256 | 6.36 | 4900 | 0.1543 | 0.1254 |
| 0.2184 | 6.49 | 5000 | 0.1535 | 0.1254 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|