File size: 5,800 Bytes
97b0b8a
9b4592f
 
97b0b8a
9b4592f
97b0b8a
93243ff
 
2003cff
 
97b0b8a
df6d08e
2eed695
97b0b8a
 
2eed695
259d4e4
 
2eed695
 
 
 
 
 
259d4e4
 
 
 
 
 
 
2eed695
 
 
 
 
 
 
259d4e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97b0b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
language:
- pt
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- pt
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
license: apache-2.0
model-index:
- name: wav2vec2-xls-r-pt-cv7-from-bp400h
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 12.13
    - name: Test CER
      type: cer
      value: 3.68
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
    - name: Test WER
      type: wer
      value: 28.23
    - name: Test CER
      type: cer
      value: 12.58
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 26.58
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 26.86
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-pt-cv7-from-bp400h

This model is a fine-tuned version of [lgris/bp_400h_xlsr2_300M](https://huggingface.co./lgris/bp_400h_xlsr2_300M) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1535
- Wer: 0.1254

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4991        | 0.13  | 100  | 0.1774          | 0.1464 |
| 0.4655        | 0.26  | 200  | 0.1884          | 0.1568 |
| 0.4689        | 0.39  | 300  | 0.2282          | 0.1672 |
| 0.4662        | 0.52  | 400  | 0.1997          | 0.1584 |
| 0.4592        | 0.65  | 500  | 0.1989          | 0.1663 |
| 0.4533        | 0.78  | 600  | 0.2004          | 0.1698 |
| 0.4391        | 0.91  | 700  | 0.1888          | 0.1642 |
| 0.4655        | 1.04  | 800  | 0.1921          | 0.1624 |
| 0.4138        | 1.17  | 900  | 0.1950          | 0.1602 |
| 0.374         | 1.3   | 1000 | 0.2077          | 0.1658 |
| 0.4064        | 1.43  | 1100 | 0.1945          | 0.1596 |
| 0.3922        | 1.56  | 1200 | 0.2069          | 0.1665 |
| 0.4226        | 1.69  | 1300 | 0.1962          | 0.1573 |
| 0.3974        | 1.82  | 1400 | 0.1919          | 0.1553 |
| 0.3631        | 1.95  | 1500 | 0.1854          | 0.1573 |
| 0.3797        | 2.08  | 1600 | 0.1902          | 0.1550 |
| 0.3287        | 2.21  | 1700 | 0.1926          | 0.1598 |
| 0.3568        | 2.34  | 1800 | 0.1888          | 0.1534 |
| 0.3415        | 2.47  | 1900 | 0.1834          | 0.1502 |
| 0.3545        | 2.6   | 2000 | 0.1906          | 0.1560 |
| 0.3344        | 2.73  | 2100 | 0.1804          | 0.1524 |
| 0.3308        | 2.86  | 2200 | 0.1741          | 0.1485 |
| 0.344         | 2.99  | 2300 | 0.1787          | 0.1455 |
| 0.309         | 3.12  | 2400 | 0.1773          | 0.1448 |
| 0.312         | 3.25  | 2500 | 0.1738          | 0.1440 |
| 0.3066        | 3.38  | 2600 | 0.1727          | 0.1417 |
| 0.2999        | 3.51  | 2700 | 0.1692          | 0.1436 |
| 0.2985        | 3.64  | 2800 | 0.1732          | 0.1430 |
| 0.3058        | 3.77  | 2900 | 0.1754          | 0.1402 |
| 0.2943        | 3.9   | 3000 | 0.1691          | 0.1379 |
| 0.2813        | 4.03  | 3100 | 0.1754          | 0.1376 |
| 0.2733        | 4.16  | 3200 | 0.1639          | 0.1363 |
| 0.2592        | 4.29  | 3300 | 0.1675          | 0.1349 |
| 0.2697        | 4.42  | 3400 | 0.1618          | 0.1360 |
| 0.2538        | 4.55  | 3500 | 0.1658          | 0.1348 |
| 0.2746        | 4.67  | 3600 | 0.1674          | 0.1325 |
| 0.2655        | 4.8   | 3700 | 0.1655          | 0.1319 |
| 0.2745        | 4.93  | 3800 | 0.1665          | 0.1316 |
| 0.2617        | 5.06  | 3900 | 0.1600          | 0.1311 |
| 0.2674        | 5.19  | 4000 | 0.1623          | 0.1311 |
| 0.237         | 5.32  | 4100 | 0.1591          | 0.1315 |
| 0.2669        | 5.45  | 4200 | 0.1584          | 0.1295 |
| 0.2476        | 5.58  | 4300 | 0.1572          | 0.1285 |
| 0.2445        | 5.71  | 4400 | 0.1580          | 0.1271 |
| 0.2207        | 5.84  | 4500 | 0.1567          | 0.1269 |
| 0.2289        | 5.97  | 4600 | 0.1536          | 0.1260 |
| 0.2438        | 6.1   | 4700 | 0.1530          | 0.1260 |
| 0.227         | 6.23  | 4800 | 0.1544          | 0.1249 |
| 0.2256        | 6.36  | 4900 | 0.1543          | 0.1254 |
| 0.2184        | 6.49  | 5000 | 0.1535          | 0.1254 |


### Framework versions

- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3