--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: 7b869ff4-f688-43b6-8109-9e97d7544b7a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: false chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5964e954f8a774ad_train_data.json ds_type: json format: custom path: /workspace/input_data/5964e954f8a774ad_train_data.json type: field_input: text field_instruction: prompt field_output: score_level format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/7b869ff4-f688-43b6-8109-9e97d7544b7a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/5964e954f8a774ad_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7b869ff4-f688-43b6-8109-9e97d7544b7a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7b869ff4-f688-43b6-8109-9e97d7544b7a warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 7b869ff4-f688-43b6-8109-9e97d7544b7a This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co./WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.7459 | 0.0022 | 1 | 9.7895 | | 8.6089 | 0.0110 | 5 | 8.1335 | | 2.9754 | 0.0219 | 10 | 1.9544 | | 0.765 | 0.0329 | 15 | 0.5049 | | 0.9201 | 0.0439 | 20 | 0.7542 | | 0.5405 | 0.0549 | 25 | 0.5149 | | 0.5533 | 0.0658 | 30 | 0.5817 | | 0.8103 | 0.0768 | 35 | 0.4703 | | 0.4951 | 0.0878 | 40 | 0.4914 | | 0.4763 | 0.0987 | 45 | 0.4491 | | 0.3867 | 0.1097 | 50 | 0.4170 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1