leeloolee commited on
Commit
c0e3fa0
·
verified ·
1 Parent(s): 8ef1eca

Upload 10 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
The diff for this file is too large to render. See raw diff
 
images/mgte-loco.png ADDED
images/mgte-mldr.png ADDED
images/mgte-mteb.png ADDED
images/mgte-reranker.png ADDED
images/mgte-retrieval.png ADDED
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
scripts/gte_embedding.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+
5
+ from collections import defaultdict
6
+ from typing import Dict, List, Tuple
7
+
8
+ import numpy as np
9
+ import torch
10
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
11
+ from transformers.utils import is_torch_npu_available
12
+
13
+
14
+ class GTEEmbeddidng(torch.nn.Module):
15
+ def __init__(self,
16
+ model_name: str = None,
17
+ normalized: bool = True,
18
+ use_fp16: bool = True,
19
+ device: str = None
20
+ ):
21
+ super().__init__()
22
+ self.normalized = normalized
23
+ if device:
24
+ self.device = torch.device(device)
25
+ else:
26
+ if torch.cuda.is_available():
27
+ self.device = torch.device("cuda")
28
+ elif torch.backends.mps.is_available():
29
+ self.device = torch.device("mps")
30
+ elif is_torch_npu_available():
31
+ self.device = torch.device("npu")
32
+ else:
33
+ self.device = torch.device("cpu")
34
+ use_fp16 = False
35
+ self.use_fp16 = use_fp16
36
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
37
+ self.model = AutoModelForTokenClassification.from_pretrained(
38
+ model_name, trust_remote_code=True, torch_dtype=torch.float16 if self.use_fp16 else None
39
+ )
40
+ self.vocab_size = self.model.config.vocab_size
41
+ self.model.to(self.device)
42
+
43
+ def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
44
+ # conver to dict
45
+ result = defaultdict(int)
46
+ unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id,
47
+ self.tokenizer.unk_token_id])
48
+ # token_weights = np.ceil(token_weights * 100)
49
+ for w, idx in zip(token_weights, input_ids):
50
+ if idx not in unused_tokens and w > 0:
51
+ token = self.tokenizer.decode([int(idx)])
52
+ if w > result[token]:
53
+ result[token] = w
54
+ return result
55
+
56
+ @torch.no_grad()
57
+ def encode(self,
58
+ texts: None,
59
+ dimension: int = None,
60
+ max_length: int = 8192,
61
+ batch_size: int = 16,
62
+ return_dense: bool = True,
63
+ return_sparse: bool = False):
64
+ if dimension is None:
65
+ dimension = self.model.config.hidden_size
66
+ if isinstance(texts, str):
67
+ texts = [texts]
68
+ num_texts = len(texts)
69
+ all_dense_vecs = []
70
+ all_token_weights = []
71
+ for n, i in enumerate(range(0, num_texts, batch_size)):
72
+ batch = texts[i: i + batch_size]
73
+ resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse)
74
+ if return_dense:
75
+ all_dense_vecs.append(resulst['dense_embeddings'])
76
+ if return_sparse:
77
+ all_token_weights.extend(resulst['token_weights'])
78
+ all_dense_vecs = torch.cat(all_dense_vecs, dim=0)
79
+ return {
80
+ "dense_embeddings": all_dense_vecs,
81
+ "token_weights": all_token_weights
82
+ }
83
+
84
+ @torch.no_grad()
85
+ def _encode(self,
86
+ texts: Dict[str, torch.Tensor] = None,
87
+ dimension: int = None,
88
+ max_length: int = 1024,
89
+ batch_size: int = 16,
90
+ return_dense: bool = True,
91
+ return_sparse: bool = False):
92
+
93
+ text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
94
+ text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
95
+ model_out = self.model(**text_input, return_dict=True)
96
+
97
+ output = {}
98
+ if return_dense:
99
+ dense_vecs = model_out.last_hidden_state[:, 0, :dimension]
100
+ if self.normalized:
101
+ dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
102
+ output['dense_embeddings'] = dense_vecs
103
+ if return_sparse:
104
+ token_weights = torch.relu(model_out.logits).squeeze(-1)
105
+ token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
106
+ text_input['input_ids'].cpu().numpy().tolist()))
107
+ output['token_weights'] = token_weights
108
+
109
+ return output
110
+
111
+ def _compute_sparse_scores(self, embs1, embs2):
112
+ scores = 0
113
+ for token, weight in embs1.items():
114
+ if token in embs2:
115
+ scores += weight * embs2[token]
116
+ return scores
117
+
118
+ def compute_sparse_scores(self, embs1, embs2):
119
+ scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)]
120
+ return np.array(scores)
121
+
122
+ def compute_dense_scores(self, embs1, embs2):
123
+ scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy()
124
+ return scores
125
+
126
+ @torch.no_grad()
127
+ def compute_scores(self,
128
+ text_pairs: List[Tuple[str, str]],
129
+ dimension: int = None,
130
+ max_length: int = 1024,
131
+ batch_size: int = 16,
132
+ dense_weight=1.0,
133
+ sparse_weight=0.1):
134
+ text1_list = [text_pair[0] for text_pair in text_pairs]
135
+ text2_list = [text_pair[1] for text_pair in text_pairs]
136
+ embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
137
+ embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
138
+ scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \
139
+ self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
140
+ scores = scores.tolist()
141
+ return scores
142
+
143
+
144
+ if __name__ == '__main__':
145
+ gte = GTEEmbeddidng('Alibaba-NLP/gte-multilingual-base')
146
+ docs = [
147
+ "黑龙江离俄罗斯很近",
148
+ "哈尔滨是中国黑龙江省的省会,位于中国东北",
149
+ "you are the hero"
150
+ ]
151
+ print('docs', docs)
152
+ embs = gte.encode(docs, return_dense=True,return_sparse=True)
153
+ print('dense vecs', embs['dense_embeddings'])
154
+ print('sparse vecs', embs['token_weights'])
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }