Upload 10 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +0 -0
- images/mgte-loco.png +0 -0
- images/mgte-mldr.png +0 -0
- images/mgte-mteb.png +0 -0
- images/mgte-reranker.png +0 -0
- images/mgte-retrieval.png +0 -0
- modules.json +20 -0
- scripts/gte_embedding.py +154 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
The diff for this file is too large to render.
See raw diff
|
|
images/mgte-loco.png
ADDED
images/mgte-mldr.png
ADDED
images/mgte-mteb.png
ADDED
images/mgte-reranker.png
ADDED
images/mgte-retrieval.png
ADDED
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
scripts/gte_embedding.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import Dict, List, Tuple
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
11 |
+
from transformers.utils import is_torch_npu_available
|
12 |
+
|
13 |
+
|
14 |
+
class GTEEmbeddidng(torch.nn.Module):
|
15 |
+
def __init__(self,
|
16 |
+
model_name: str = None,
|
17 |
+
normalized: bool = True,
|
18 |
+
use_fp16: bool = True,
|
19 |
+
device: str = None
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.normalized = normalized
|
23 |
+
if device:
|
24 |
+
self.device = torch.device(device)
|
25 |
+
else:
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
self.device = torch.device("cuda")
|
28 |
+
elif torch.backends.mps.is_available():
|
29 |
+
self.device = torch.device("mps")
|
30 |
+
elif is_torch_npu_available():
|
31 |
+
self.device = torch.device("npu")
|
32 |
+
else:
|
33 |
+
self.device = torch.device("cpu")
|
34 |
+
use_fp16 = False
|
35 |
+
self.use_fp16 = use_fp16
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
self.model = AutoModelForTokenClassification.from_pretrained(
|
38 |
+
model_name, trust_remote_code=True, torch_dtype=torch.float16 if self.use_fp16 else None
|
39 |
+
)
|
40 |
+
self.vocab_size = self.model.config.vocab_size
|
41 |
+
self.model.to(self.device)
|
42 |
+
|
43 |
+
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
|
44 |
+
# conver to dict
|
45 |
+
result = defaultdict(int)
|
46 |
+
unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id,
|
47 |
+
self.tokenizer.unk_token_id])
|
48 |
+
# token_weights = np.ceil(token_weights * 100)
|
49 |
+
for w, idx in zip(token_weights, input_ids):
|
50 |
+
if idx not in unused_tokens and w > 0:
|
51 |
+
token = self.tokenizer.decode([int(idx)])
|
52 |
+
if w > result[token]:
|
53 |
+
result[token] = w
|
54 |
+
return result
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def encode(self,
|
58 |
+
texts: None,
|
59 |
+
dimension: int = None,
|
60 |
+
max_length: int = 8192,
|
61 |
+
batch_size: int = 16,
|
62 |
+
return_dense: bool = True,
|
63 |
+
return_sparse: bool = False):
|
64 |
+
if dimension is None:
|
65 |
+
dimension = self.model.config.hidden_size
|
66 |
+
if isinstance(texts, str):
|
67 |
+
texts = [texts]
|
68 |
+
num_texts = len(texts)
|
69 |
+
all_dense_vecs = []
|
70 |
+
all_token_weights = []
|
71 |
+
for n, i in enumerate(range(0, num_texts, batch_size)):
|
72 |
+
batch = texts[i: i + batch_size]
|
73 |
+
resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse)
|
74 |
+
if return_dense:
|
75 |
+
all_dense_vecs.append(resulst['dense_embeddings'])
|
76 |
+
if return_sparse:
|
77 |
+
all_token_weights.extend(resulst['token_weights'])
|
78 |
+
all_dense_vecs = torch.cat(all_dense_vecs, dim=0)
|
79 |
+
return {
|
80 |
+
"dense_embeddings": all_dense_vecs,
|
81 |
+
"token_weights": all_token_weights
|
82 |
+
}
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def _encode(self,
|
86 |
+
texts: Dict[str, torch.Tensor] = None,
|
87 |
+
dimension: int = None,
|
88 |
+
max_length: int = 1024,
|
89 |
+
batch_size: int = 16,
|
90 |
+
return_dense: bool = True,
|
91 |
+
return_sparse: bool = False):
|
92 |
+
|
93 |
+
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
|
94 |
+
text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
|
95 |
+
model_out = self.model(**text_input, return_dict=True)
|
96 |
+
|
97 |
+
output = {}
|
98 |
+
if return_dense:
|
99 |
+
dense_vecs = model_out.last_hidden_state[:, 0, :dimension]
|
100 |
+
if self.normalized:
|
101 |
+
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
|
102 |
+
output['dense_embeddings'] = dense_vecs
|
103 |
+
if return_sparse:
|
104 |
+
token_weights = torch.relu(model_out.logits).squeeze(-1)
|
105 |
+
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
|
106 |
+
text_input['input_ids'].cpu().numpy().tolist()))
|
107 |
+
output['token_weights'] = token_weights
|
108 |
+
|
109 |
+
return output
|
110 |
+
|
111 |
+
def _compute_sparse_scores(self, embs1, embs2):
|
112 |
+
scores = 0
|
113 |
+
for token, weight in embs1.items():
|
114 |
+
if token in embs2:
|
115 |
+
scores += weight * embs2[token]
|
116 |
+
return scores
|
117 |
+
|
118 |
+
def compute_sparse_scores(self, embs1, embs2):
|
119 |
+
scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)]
|
120 |
+
return np.array(scores)
|
121 |
+
|
122 |
+
def compute_dense_scores(self, embs1, embs2):
|
123 |
+
scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy()
|
124 |
+
return scores
|
125 |
+
|
126 |
+
@torch.no_grad()
|
127 |
+
def compute_scores(self,
|
128 |
+
text_pairs: List[Tuple[str, str]],
|
129 |
+
dimension: int = None,
|
130 |
+
max_length: int = 1024,
|
131 |
+
batch_size: int = 16,
|
132 |
+
dense_weight=1.0,
|
133 |
+
sparse_weight=0.1):
|
134 |
+
text1_list = [text_pair[0] for text_pair in text_pairs]
|
135 |
+
text2_list = [text_pair[1] for text_pair in text_pairs]
|
136 |
+
embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
137 |
+
embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
|
138 |
+
scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \
|
139 |
+
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
|
140 |
+
scores = scores.tolist()
|
141 |
+
return scores
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == '__main__':
|
145 |
+
gte = GTEEmbeddidng('Alibaba-NLP/gte-multilingual-base')
|
146 |
+
docs = [
|
147 |
+
"黑龙江离俄罗斯很近",
|
148 |
+
"哈尔滨是中国黑龙江省的省会,位于中国东北",
|
149 |
+
"you are the hero"
|
150 |
+
]
|
151 |
+
print('docs', docs)
|
152 |
+
embs = gte.encode(docs, return_dense=True,return_sparse=True)
|
153 |
+
print('dense vecs', embs['dense_embeddings'])
|
154 |
+
print('sparse vecs', embs['token_weights'])
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|