Update README.md
Browse files
README.md
CHANGED
@@ -3,199 +3,36 @@ library_name: transformers
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
|
10 |
-
|
11 |
|
|
|
12 |
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
- **Funded by [optional]:** [More Information Needed]
|
24 |
-
- **Shared by [optional]:** [More Information Needed]
|
25 |
-
- **Model type:** [More Information Needed]
|
26 |
-
- **Language(s) (NLP):** [More Information Needed]
|
27 |
-
- **License:** [More Information Needed]
|
28 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
### Direct Use
|
43 |
-
|
44 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
45 |
-
|
46 |
-
[More Information Needed]
|
47 |
-
|
48 |
-
### Downstream Use [optional]
|
49 |
-
|
50 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Out-of-Scope Use
|
55 |
-
|
56 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
## Bias, Risks, and Limitations
|
61 |
-
|
62 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
63 |
-
|
64 |
-
[More Information Needed]
|
65 |
-
|
66 |
-
### Recommendations
|
67 |
-
|
68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
-
|
70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
-
|
72 |
-
## How to Get Started with the Model
|
73 |
-
|
74 |
-
Use the code below to get started with the model.
|
75 |
-
|
76 |
-
[More Information Needed]
|
77 |
-
|
78 |
-
## Training Details
|
79 |
-
|
80 |
-
### Training Data
|
81 |
-
|
82 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
### Training Procedure
|
87 |
-
|
88 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
-
|
90 |
-
#### Preprocessing [optional]
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
|
95 |
-
#### Training Hyperparameters
|
96 |
-
|
97 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
-
|
99 |
-
#### Speeds, Sizes, Times [optional]
|
100 |
-
|
101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
-
|
103 |
-
[More Information Needed]
|
104 |
-
|
105 |
-
## Evaluation
|
106 |
-
|
107 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
-
|
109 |
-
### Testing Data, Factors & Metrics
|
110 |
-
|
111 |
-
#### Testing Data
|
112 |
-
|
113 |
-
<!-- This should link to a Dataset Card if possible. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Metrics
|
124 |
-
|
125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Results
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
6 |
+
datasets:
|
7 |
+
- lamm-mit/SAGI-1-SYMBOLIC_DATA_PLUS_REASONING_DATA_V1_100K
|
8 |
---
|
9 |
|
10 |
+
# Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers: Sparse-GIN model for logic and reasoning
|
11 |
|
12 |
+
We present an approach to enhancing Transformer architectures by integrating graph-aware relational reasoning into their attention mechanisms. Building on the inherent connection between attention and graph theory, we reformulate the Transformer’s attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach improves the model’s ability to capture complex dependencies and generalize across tasks, as evidenced by a reduced generalization gap and improved learning performance.
|
13 |
|
14 |
+
Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Across our experiments, our results demonstrate that graph-aware attention mechanisms outperform traditional attention in both training efficiency and validation performance. Furthermore, sparse GIN fine-tuning achieves improved training dynamics and better generalization compared to conventional methods like LoRA. These insights not only bridge graph theory and Transformer architectures but also uncover latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood and optimized.
|
15 |
|
16 |
+
By evolving Transformers as hierarchical GIN models, we reveal their implicit capacity for graph-level relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.
|
17 |
|
18 |
+
![image](https://github.com/user-attachments/assets/02c9b587-73f0-4293-84f8-574bc2e9018c)
|
19 |
|
20 |
+
Figure 1: Encoder-only transformer architecture (panel A), adapted here by using a GNN-based self-attention mechanism with a graph neural network. As another variant (panel B) suitable for fine-tuning a pre-trained model akin to a LoRA model, we introduce Sparse-GIN, an option where we retain the adjacency matrix predicted by the pretrained model but instead use it to construct a sparse adjacency matrix.
|
21 |
|
22 |
+
![image](https://github.com/user-attachments/assets/5c15d37d-c693-453d-822a-97a36d4c9b8b)
|
23 |
|
24 |
+
Figure 2: Visualization of adjacency matrices and interpretation of corresponding causal graphs. Panel A: Visual representation of an adjacency matrix for one specific layer and one head, extracted from a pretrained model. Panel B, left shows a large-scale adjacency matrix, where interaction strengths are color-coded, with annotations highlighting specific points of interest. Panel B, right displays the corresponding causal graph, illustrating directional relationships between nodes based on the adjacency matrix. These visualizations provide insights into the structural and causal relationships encoded in the adjacency matrices.
|
25 |
|
26 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
```bibtex
|
29 |
+
@article{Buehler2025GraphAwareGPT,
|
30 |
+
title={Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers},
|
31 |
+
author={Markus J. Buehler},
|
32 |
+
year={2025},
|
33 |
+
eprint={2501.02393},
|
34 |
+
archivePrefix={arXiv},
|
35 |
+
primaryClass={cs.LG},
|
36 |
+
url={https://arxiv.org/abs/2501.02393},
|
37 |
+
}
|
38 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|