File size: 6,645 Bytes
1a7246c
 
 
 
 
 
 
 
 
 
9aed656
1a7246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4dbff9
c02bf5d
1a7246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858f111
1a7246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
license: apache-2.0
datasets:
- amphora/QwQ-LongCoT-130K
language:
- en
metrics:
- perplexity
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
library_name: transformers
---

## Model Details:

- **Base Model:** Qwen/Qwen2-0.5B-Instruct  
- **Teacher Model:** Qwen/QwQ-32B-Preview  
- **Distillation Framework:** Generative Knowledge Distillation (GKD)  
- **Task Type:** Conversational AI / Causal Language Modeling  
- **Parameters:** 0.5B  
- **Special Features:**
  - Optimized with LoraConfig for fine-tuning
  - Integrated gradient checkpointing for efficient training
  - Step-by-step reasoning capabilities for better problem-solving

---

## Training:

QwQ-0.5B-Distilled was trained using the **QwQ-LongCoT-130K dataset**, a carefully curated collection of long-context examples designed for reasoning and conversational AI tasks. The GKD framework ensures that the student model mimics the teacher model’s outputs, aligning its predictions with high-quality responses.
### Training Progress:
[β–“β–“β–“β–“β–‘β–‘β–‘β–‘β–‘β–‘] 23%

### Training Script:

```python
from datasets import Dataset
from trl import GKDConfig, GKDTrainer
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)
from datasets import load_dataset
from peft import LoraConfig

parser = argparse.ArgumentParser()
parser.add_argument("--temperature", type=float, default = 0.9)
parser.add_argument("--lmbda", type=float, default = 0.5)
parser.add_argument("--beta", type=float, default = 0.5)
parser.add_argument("--max_new_tokens", type=int, default = 4096)
parser.add_argument("--output_dir", type=str, default="gkd-model")
parser.add_argument("--per_device_train_batch_size", type=int, default=1)
parser.add_argument("--gradient_accumulation_steps", type=int, default=16)
parser.add_argument("--gradient_checkpointing", action="store_true", default=False)
parser.add_argument("--resume_from_checkpoint", action="store_true", default=False)
parser.add_argument("--lora", action="store_true")
args = parser.parse_args()

qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K", split = "train")
messages = []
for each in qwq_dataset:
    msg = [
        {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
        {"role": "user", "content": each["problem"]},
        {"role": "assistant", "content": each["qwq"]},
    ]
    messages.append(msg)

TRAIN_SPLIT_RATIO = 0.9
train_size = int(TRAIN_SPLIT_RATIO * len(messages))
eval_size = len(messages) - train_size

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")




# The teacher model to calculate the KL divergence against
teacher_model = AutoModelForCausalLM.from_pretrained("Qwen/QwQ-32B-Preview", torch_dtype=torch.bfloat16, device_map="auto") 
teacher_model.lm_head.weight.data = teacher_model.lm_head.weight.data[:151936, :]
teacher_model.lm_head.out_features = 151936



# The model to optimise
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto") 



### Real Dataset
train_dataset = Dataset.from_dict({"messages":messages[:train_size]})
eval_dataset = Dataset.from_dict({"messages":messages[train_size:]})
training_args = GKDConfig(
    output_dir=args.output_dir,
    temperature=args.temperature,
    lmbda=args.lmbda,
    beta=args.beta,
    max_new_tokens=args.max_new_tokens,
    per_device_train_batch_size=args.per_device_train_batch_size,
    gradient_accumulation_steps=args.gradient_accumulation_steps,
    gradient_checkpointing = args.gradient_checkpointing,
    save_steps = 100,
    save_total_limit = 5
    )

lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)

trainer = GKDTrainer(
    model=model,
    teacher_model=teacher_model,
    args=training_args,
    processing_class=tokenizer,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    peft_config=lora_config if args.lora else None
)
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
```

### Dataset:  
- **Source:** `amphora/QwQ-LongCoT-130K`  
- **Split:** 90% Training, 10% Evaluation  

---

## Example Usage:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Model name
model_name = "kz919/QwQ-0.5B-Distilled"

# Load the model
print(f"Starting to load the model {model_name} into memory")
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map={"": 0}
)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Define the prompt
prompt = "How many r in strawberry."
messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": prompt}
]

# Tokenize the input
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# Generate a response
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=4096
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

# Decode the response
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## Applications:

1. **Conversational Assistants:**  
   Suitable for AI chatbots that require reasoning and long-context understanding.  

2. **Educational Tools:**  
   Provides step-by-step explanations, making it ideal for learning environments.  

3. **Creative Writing:**  
   Assists in generating coherent, contextually aware long-form content.  

4. **Technical Support:**  
   Handles complex customer queries with precision and clarity.  

---

## Limitations:

- While distilled for efficiency, performance on highly complex reasoning tasks may slightly trail the teacher model.  
- Warning 🚨🚨🚨: This model is not fully trained, merely a proof of concept. Don't yell at me if it's outputing nonesense.
---

## Citation:

If you use this model in your research or applications, please cite it as:

```bibtex
@model{qwq_0.5B_distilled,
  author = {Kaizhao Liang},
  title = {QwQ-0.5B-Distilled: A Reasoning Model for Edge Devices},
  year = {2024},
  publisher = {Hugging Face},
  version = {1.0}
}
```

---

This model is an example of how efficient fine-tuning and distillation methods can deliver robust conversational AI capabilities in a smaller, more manageable footprint.