--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: 6ad0aabe-562a-4922-a36e-07ea9cf3389b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a2063aee6e61475b_train_data.json ds_type: json format: custom path: /workspace/input_data/a2063aee6e61475b_train_data.json type: field_instruction: ENName field_output: English format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/6ad0aabe-562a-4922-a36e-07ea9cf3389b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a2063aee6e61475b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ee236be3-90ec-455c-841e-dda12c91106d wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: ee236be3-90ec-455c-841e-dda12c91106d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ```

# 6ad0aabe-562a-4922-a36e-07ea9cf3389b This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co./katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 11.1118 | | 44.0148 | 0.0124 | 50 | 10.9735 | | 43.4825 | 0.0249 | 100 | 10.8414 | | 43.2804 | 0.0373 | 150 | 10.8056 | | 43.2652 | 0.0498 | 200 | 10.8018 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1