File size: 2,138 Bytes
9f3e5aa
 
 
 
362800b
 
cbf0886
 
 
 
362800b
 
cbf0886
 
 
 
9126506
9f3e5aa
 
 
807e4f6
 
80b3e9b
bfc7627
c70abac
15ab89e
c70abac
 
9f3e5aa
807e4f6
9f3e5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
807e4f6
cbbb11a
807e4f6
cbbb11a
807e4f6
cbbb11a
 
354ef82
e018741
 
 
 
 
 
 
354ef82
 
807e4f6
9f3e5aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language:
- en
- es
base_model:
- jameslahm/yolov10s
tags:
- GAMES
- COUNTER STRIKE2
- CS2
- VIDEOGAMES
- CS
- OBJECT DETECTION
- YOLO
- YOLOV10
- YOLOV10S
pipeline_tag: object-detection
---
# Counter Strike 2 players detector

#### Supported Labels
['CT', 'CT_head', 'T', 'T_head']

#### ALL my models YOLOv10 & YOLOv9
- Yolov10s: https://huggingface.co./jparedesDS/cs2-yolov10s
- Yolov9c: https://huggingface.co./jparedesDS/cs2-yolov9c
- Yolov10m: https://huggingface.co./jparedesDS/cs2-yolov10m
- Yolov10b: https://huggingface.co./jparedesDS/cs2-yolov10b

#### How to use
```
from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10s_cs2.pt')

# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )
```

#### Labels
![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/KRuK-Y9uEP2Hwat5ojD1E.jpeg)
#### Results
![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/-DOb5ZmGoI_vXs7zgtFMP.png)
#### Predict
![train_batch0.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/Ie7m1EQosL87TbN_UoS-0.jpeg)
![train_batch1.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/Lr3solcPWqHrdMvQ0hBX9.jpeg)
```
YOLOv10s summary (fused): 293 layers, 8,038,056 parameters, 0 gradients, 24.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:03<00:00,  1.41it/s]
                   all        160        372      0.958       0.94      0.979      0.772
               ct_body         88        110      0.964      0.964      0.988      0.861
               ct_head         82        104      0.946      0.847      0.953      0.634
                t_body         70         84      0.986      0.976       0.99      0.866
                t_head         62         74      0.938      0.973      0.984      0.728
```

#### Others models Counter Strike 2 YOLOv10m Object Detection
https://huggingface.co./ChitoParedes/cs2-yolov10m