--- language: ar datasets: - common_voice - arabic_speech_corpus metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 39.59 - name: Test CER type: cer value: 18.18 --- # Fine-tuned XLSR-53 large model for speech recognition in Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on Arabic using the train and validation splits of [Common Voice 6.1](https://huggingface.co./datasets/common_voice) and [Arabic Speech Corpus](https://huggingface.co./datasets/arabic_speech_corpus). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ألديك قلم ؟ | ألديك قلم | | ليست هناك مسافة على هذه الأرض أبعد من يوم أمس. | ليست نالك مسافة على هذه الأرض أبعد من يوم الأمس م | | إنك تكبر المشكلة. | إنك تكبر المشكلة | | يرغب أن يلتقي بك. | يرغب أن يلتقي بك | | إنهم لا يعرفون لماذا حتى. | إنهم لا يعرفون لماذا حتى | | سيسعدني مساعدتك أي وقت تحب. | سيسئدنيمساعدتك أي وقد تحب | | أَحَبُّ نظريّة علمية إليّ هي أن حلقات زحل مكونة بالكامل من الأمتعة المفقودة. | أحب نظرية علمية إلي هي أن حل قتزح المكوينا بالكامل من الأمت عن المفقودة | | سأشتري له قلماً. | سأشتري له قلما | | أين المشكلة ؟ | أين المشكل | | وَلِلَّهِ يَسْجُدُ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ مِنْ دَابَّةٍ وَالْمَلَائِكَةُ وَهُمْ لَا يَسْتَكْبِرُونَ | ولله يسجد ما في السماوات وما في الأرض من دابة والملائكة وهم لا يستكبرون | ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-14). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-arabic | **39.59%** | **18.18%** | | bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% | | othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% | | kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% | | mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% | | anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% | | elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-arabic, title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-arabic}}, year={2021} } ```