isacat commited on
Commit
0b5d55b
1 Parent(s): 9f0c664

Update README

Browse files
Files changed (1) hide show
  1. README.md +3148 -1
README.md CHANGED
@@ -1,3 +1,3150 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: jina-embeddings-v2-base-de
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 73.76119402985076
18
+ - type: ap
19
+ value: 35.99577188521176
20
+ - type: f1
21
+ value: 67.50397431543269
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_counterfactual
26
+ name: MTEB AmazonCounterfactualClassification (de)
27
+ config: de
28
+ split: test
29
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
30
+ metrics:
31
+ - type: accuracy
32
+ value: 68.9186295503212
33
+ - type: ap
34
+ value: 79.73307115840507
35
+ - type: f1
36
+ value: 66.66245744831339
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_polarity
41
+ name: MTEB AmazonPolarityClassification
42
+ config: default
43
+ split: test
44
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
45
+ metrics:
46
+ - type: accuracy
47
+ value: 77.52215
48
+ - type: ap
49
+ value: 71.85051037177416
50
+ - type: f1
51
+ value: 77.4171096157774
52
+ - task:
53
+ type: Classification
54
+ dataset:
55
+ type: mteb/amazon_reviews_multi
56
+ name: MTEB AmazonReviewsClassification (en)
57
+ config: en
58
+ split: test
59
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
60
+ metrics:
61
+ - type: accuracy
62
+ value: 38.498
63
+ - type: f1
64
+ value: 38.058193386555956
65
+ - task:
66
+ type: Classification
67
+ dataset:
68
+ type: mteb/amazon_reviews_multi
69
+ name: MTEB AmazonReviewsClassification (de)
70
+ config: de
71
+ split: test
72
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
73
+ metrics:
74
+ - type: accuracy
75
+ value: 37.717999999999996
76
+ - type: f1
77
+ value: 37.22674371574757
78
+ - task:
79
+ type: Retrieval
80
+ dataset:
81
+ type: arguana
82
+ name: MTEB ArguAna
83
+ config: default
84
+ split: test
85
+ revision: None
86
+ metrics:
87
+ - type: map_at_1
88
+ value: 25.319999999999997
89
+ - type: map_at_10
90
+ value: 40.351
91
+ - type: map_at_100
92
+ value: 41.435
93
+ - type: map_at_1000
94
+ value: 41.443000000000005
95
+ - type: map_at_3
96
+ value: 35.266
97
+ - type: map_at_5
98
+ value: 37.99
99
+ - type: mrr_at_1
100
+ value: 25.746999999999996
101
+ - type: mrr_at_10
102
+ value: 40.515
103
+ - type: mrr_at_100
104
+ value: 41.606
105
+ - type: mrr_at_1000
106
+ value: 41.614000000000004
107
+ - type: mrr_at_3
108
+ value: 35.42
109
+ - type: mrr_at_5
110
+ value: 38.112
111
+ - type: ndcg_at_1
112
+ value: 25.319999999999997
113
+ - type: ndcg_at_10
114
+ value: 49.332
115
+ - type: ndcg_at_100
116
+ value: 53.909
117
+ - type: ndcg_at_1000
118
+ value: 54.089
119
+ - type: ndcg_at_3
120
+ value: 38.705
121
+ - type: ndcg_at_5
122
+ value: 43.606
123
+ - type: precision_at_1
124
+ value: 25.319999999999997
125
+ - type: precision_at_10
126
+ value: 7.831
127
+ - type: precision_at_100
128
+ value: 0.9820000000000001
129
+ - type: precision_at_1000
130
+ value: 0.1
131
+ - type: precision_at_3
132
+ value: 16.24
133
+ - type: precision_at_5
134
+ value: 12.119
135
+ - type: recall_at_1
136
+ value: 25.319999999999997
137
+ - type: recall_at_10
138
+ value: 78.307
139
+ - type: recall_at_100
140
+ value: 98.222
141
+ - type: recall_at_1000
142
+ value: 99.57300000000001
143
+ - type: recall_at_3
144
+ value: 48.72
145
+ - type: recall_at_5
146
+ value: 60.597
147
+ - task:
148
+ type: Clustering
149
+ dataset:
150
+ type: mteb/arxiv-clustering-p2p
151
+ name: MTEB ArxivClusteringP2P
152
+ config: default
153
+ split: test
154
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
155
+ metrics:
156
+ - type: v_measure
157
+ value: 41.43100588255654
158
+ - task:
159
+ type: Clustering
160
+ dataset:
161
+ type: mteb/arxiv-clustering-s2s
162
+ name: MTEB ArxivClusteringS2S
163
+ config: default
164
+ split: test
165
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
166
+ metrics:
167
+ - type: v_measure
168
+ value: 32.08988904593667
169
+ - task:
170
+ type: Reranking
171
+ dataset:
172
+ type: mteb/askubuntudupquestions-reranking
173
+ name: MTEB AskUbuntuDupQuestions
174
+ config: default
175
+ split: test
176
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
177
+ metrics:
178
+ - type: map
179
+ value: 60.55514765595906
180
+ - type: mrr
181
+ value: 73.51393835465858
182
+ - task:
183
+ type: STS
184
+ dataset:
185
+ type: mteb/biosses-sts
186
+ name: MTEB BIOSSES
187
+ config: default
188
+ split: test
189
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
190
+ metrics:
191
+ - type: cos_sim_pearson
192
+ value: 79.6723823121172
193
+ - type: cos_sim_spearman
194
+ value: 76.90596922214986
195
+ - type: euclidean_pearson
196
+ value: 77.87910737957918
197
+ - type: euclidean_spearman
198
+ value: 76.66319260598262
199
+ - type: manhattan_pearson
200
+ value: 77.37039493457965
201
+ - type: manhattan_spearman
202
+ value: 76.09872191280964
203
+ - task:
204
+ type: BitextMining
205
+ dataset:
206
+ type: mteb/bucc-bitext-mining
207
+ name: MTEB BUCC (de-en)
208
+ config: de-en
209
+ split: test
210
+ revision: d51519689f32196a32af33b075a01d0e7c51e252
211
+ metrics:
212
+ - type: accuracy
213
+ value: 98.97703549060543
214
+ - type: f1
215
+ value: 98.86569241475296
216
+ - type: precision
217
+ value: 98.81002087682673
218
+ - type: recall
219
+ value: 98.97703549060543
220
+ - task:
221
+ type: Classification
222
+ dataset:
223
+ type: mteb/banking77
224
+ name: MTEB Banking77Classification
225
+ config: default
226
+ split: test
227
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
228
+ metrics:
229
+ - type: accuracy
230
+ value: 83.93506493506493
231
+ - type: f1
232
+ value: 83.91014949949302
233
+ - task:
234
+ type: Clustering
235
+ dataset:
236
+ type: mteb/biorxiv-clustering-p2p
237
+ name: MTEB BiorxivClusteringP2P
238
+ config: default
239
+ split: test
240
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
241
+ metrics:
242
+ - type: v_measure
243
+ value: 34.970675877585144
244
+ - task:
245
+ type: Clustering
246
+ dataset:
247
+ type: mteb/biorxiv-clustering-s2s
248
+ name: MTEB BiorxivClusteringS2S
249
+ config: default
250
+ split: test
251
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
252
+ metrics:
253
+ - type: v_measure
254
+ value: 28.779230269190954
255
+ - task:
256
+ type: Clustering
257
+ dataset:
258
+ type: slvnwhrl/blurbs-clustering-p2p
259
+ name: MTEB BlurbsClusteringP2P
260
+ config: default
261
+ split: test
262
+ revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
263
+ metrics:
264
+ - type: v_measure
265
+ value: 35.490175601567216
266
+ - task:
267
+ type: Clustering
268
+ dataset:
269
+ type: slvnwhrl/blurbs-clustering-s2s
270
+ name: MTEB BlurbsClusteringS2S
271
+ config: default
272
+ split: test
273
+ revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
274
+ metrics:
275
+ - type: v_measure
276
+ value: 16.16638280560168
277
+ - task:
278
+ type: Retrieval
279
+ dataset:
280
+ type: BeIR/cqadupstack
281
+ name: MTEB CQADupstackAndroidRetrieval
282
+ config: default
283
+ split: test
284
+ revision: None
285
+ metrics:
286
+ - type: map_at_1
287
+ value: 30.830999999999996
288
+ - type: map_at_10
289
+ value: 41.355
290
+ - type: map_at_100
291
+ value: 42.791000000000004
292
+ - type: map_at_1000
293
+ value: 42.918
294
+ - type: map_at_3
295
+ value: 38.237
296
+ - type: map_at_5
297
+ value: 40.066
298
+ - type: mrr_at_1
299
+ value: 38.484
300
+ - type: mrr_at_10
301
+ value: 47.593
302
+ - type: mrr_at_100
303
+ value: 48.388
304
+ - type: mrr_at_1000
305
+ value: 48.439
306
+ - type: mrr_at_3
307
+ value: 45.279
308
+ - type: mrr_at_5
309
+ value: 46.724
310
+ - type: ndcg_at_1
311
+ value: 38.484
312
+ - type: ndcg_at_10
313
+ value: 47.27
314
+ - type: ndcg_at_100
315
+ value: 52.568000000000005
316
+ - type: ndcg_at_1000
317
+ value: 54.729000000000006
318
+ - type: ndcg_at_3
319
+ value: 43.061
320
+ - type: ndcg_at_5
321
+ value: 45.083
322
+ - type: precision_at_1
323
+ value: 38.484
324
+ - type: precision_at_10
325
+ value: 8.927
326
+ - type: precision_at_100
327
+ value: 1.425
328
+ - type: precision_at_1000
329
+ value: 0.19
330
+ - type: precision_at_3
331
+ value: 20.791999999999998
332
+ - type: precision_at_5
333
+ value: 14.85
334
+ - type: recall_at_1
335
+ value: 30.830999999999996
336
+ - type: recall_at_10
337
+ value: 57.87799999999999
338
+ - type: recall_at_100
339
+ value: 80.124
340
+ - type: recall_at_1000
341
+ value: 94.208
342
+ - type: recall_at_3
343
+ value: 45.083
344
+ - type: recall_at_5
345
+ value: 51.154999999999994
346
+ - task:
347
+ type: Retrieval
348
+ dataset:
349
+ type: BeIR/cqadupstack
350
+ name: MTEB CQADupstackEnglishRetrieval
351
+ config: default
352
+ split: test
353
+ revision: None
354
+ metrics:
355
+ - type: map_at_1
356
+ value: 25.782
357
+ - type: map_at_10
358
+ value: 34.492
359
+ - type: map_at_100
360
+ value: 35.521
361
+ - type: map_at_1000
362
+ value: 35.638
363
+ - type: map_at_3
364
+ value: 31.735999999999997
365
+ - type: map_at_5
366
+ value: 33.339
367
+ - type: mrr_at_1
368
+ value: 32.357
369
+ - type: mrr_at_10
370
+ value: 39.965
371
+ - type: mrr_at_100
372
+ value: 40.644000000000005
373
+ - type: mrr_at_1000
374
+ value: 40.695
375
+ - type: mrr_at_3
376
+ value: 37.739
377
+ - type: mrr_at_5
378
+ value: 39.061
379
+ - type: ndcg_at_1
380
+ value: 32.357
381
+ - type: ndcg_at_10
382
+ value: 39.644
383
+ - type: ndcg_at_100
384
+ value: 43.851
385
+ - type: ndcg_at_1000
386
+ value: 46.211999999999996
387
+ - type: ndcg_at_3
388
+ value: 35.675000000000004
389
+ - type: ndcg_at_5
390
+ value: 37.564
391
+ - type: precision_at_1
392
+ value: 32.357
393
+ - type: precision_at_10
394
+ value: 7.344
395
+ - type: precision_at_100
396
+ value: 1.201
397
+ - type: precision_at_1000
398
+ value: 0.168
399
+ - type: precision_at_3
400
+ value: 17.155
401
+ - type: precision_at_5
402
+ value: 12.166
403
+ - type: recall_at_1
404
+ value: 25.782
405
+ - type: recall_at_10
406
+ value: 49.132999999999996
407
+ - type: recall_at_100
408
+ value: 67.24
409
+ - type: recall_at_1000
410
+ value: 83.045
411
+ - type: recall_at_3
412
+ value: 37.021
413
+ - type: recall_at_5
414
+ value: 42.548
415
+ - task:
416
+ type: Retrieval
417
+ dataset:
418
+ type: BeIR/cqadupstack
419
+ name: MTEB CQADupstackGamingRetrieval
420
+ config: default
421
+ split: test
422
+ revision: None
423
+ metrics:
424
+ - type: map_at_1
425
+ value: 35.778999999999996
426
+ - type: map_at_10
427
+ value: 47.038000000000004
428
+ - type: map_at_100
429
+ value: 48.064
430
+ - type: map_at_1000
431
+ value: 48.128
432
+ - type: map_at_3
433
+ value: 44.186
434
+ - type: map_at_5
435
+ value: 45.788000000000004
436
+ - type: mrr_at_1
437
+ value: 41.254000000000005
438
+ - type: mrr_at_10
439
+ value: 50.556999999999995
440
+ - type: mrr_at_100
441
+ value: 51.296
442
+ - type: mrr_at_1000
443
+ value: 51.331
444
+ - type: mrr_at_3
445
+ value: 48.318
446
+ - type: mrr_at_5
447
+ value: 49.619
448
+ - type: ndcg_at_1
449
+ value: 41.254000000000005
450
+ - type: ndcg_at_10
451
+ value: 52.454
452
+ - type: ndcg_at_100
453
+ value: 56.776
454
+ - type: ndcg_at_1000
455
+ value: 58.181000000000004
456
+ - type: ndcg_at_3
457
+ value: 47.713
458
+ - type: ndcg_at_5
459
+ value: 49.997
460
+ - type: precision_at_1
461
+ value: 41.254000000000005
462
+ - type: precision_at_10
463
+ value: 8.464
464
+ - type: precision_at_100
465
+ value: 1.157
466
+ - type: precision_at_1000
467
+ value: 0.133
468
+ - type: precision_at_3
469
+ value: 21.526
470
+ - type: precision_at_5
471
+ value: 14.696000000000002
472
+ - type: recall_at_1
473
+ value: 35.778999999999996
474
+ - type: recall_at_10
475
+ value: 64.85300000000001
476
+ - type: recall_at_100
477
+ value: 83.98400000000001
478
+ - type: recall_at_1000
479
+ value: 94.18299999999999
480
+ - type: recall_at_3
481
+ value: 51.929
482
+ - type: recall_at_5
483
+ value: 57.666
484
+ - task:
485
+ type: Retrieval
486
+ dataset:
487
+ type: BeIR/cqadupstack
488
+ name: MTEB CQADupstackGisRetrieval
489
+ config: default
490
+ split: test
491
+ revision: None
492
+ metrics:
493
+ - type: map_at_1
494
+ value: 21.719
495
+ - type: map_at_10
496
+ value: 29.326999999999998
497
+ - type: map_at_100
498
+ value: 30.314000000000004
499
+ - type: map_at_1000
500
+ value: 30.397000000000002
501
+ - type: map_at_3
502
+ value: 27.101
503
+ - type: map_at_5
504
+ value: 28.141
505
+ - type: mrr_at_1
506
+ value: 23.503
507
+ - type: mrr_at_10
508
+ value: 31.225
509
+ - type: mrr_at_100
510
+ value: 32.096000000000004
511
+ - type: mrr_at_1000
512
+ value: 32.159
513
+ - type: mrr_at_3
514
+ value: 29.076999999999998
515
+ - type: mrr_at_5
516
+ value: 30.083
517
+ - type: ndcg_at_1
518
+ value: 23.503
519
+ - type: ndcg_at_10
520
+ value: 33.842
521
+ - type: ndcg_at_100
522
+ value: 39.038000000000004
523
+ - type: ndcg_at_1000
524
+ value: 41.214
525
+ - type: ndcg_at_3
526
+ value: 29.347
527
+ - type: ndcg_at_5
528
+ value: 31.121
529
+ - type: precision_at_1
530
+ value: 23.503
531
+ - type: precision_at_10
532
+ value: 5.266
533
+ - type: precision_at_100
534
+ value: 0.831
535
+ - type: precision_at_1000
536
+ value: 0.106
537
+ - type: precision_at_3
538
+ value: 12.504999999999999
539
+ - type: precision_at_5
540
+ value: 8.565000000000001
541
+ - type: recall_at_1
542
+ value: 21.719
543
+ - type: recall_at_10
544
+ value: 46.024
545
+ - type: recall_at_100
546
+ value: 70.78999999999999
547
+ - type: recall_at_1000
548
+ value: 87.022
549
+ - type: recall_at_3
550
+ value: 33.64
551
+ - type: recall_at_5
552
+ value: 37.992
553
+ - task:
554
+ type: Retrieval
555
+ dataset:
556
+ type: BeIR/cqadupstack
557
+ name: MTEB CQADupstackMathematicaRetrieval
558
+ config: default
559
+ split: test
560
+ revision: None
561
+ metrics:
562
+ - type: map_at_1
563
+ value: 15.601
564
+ - type: map_at_10
565
+ value: 22.054000000000002
566
+ - type: map_at_100
567
+ value: 23.177
568
+ - type: map_at_1000
569
+ value: 23.308
570
+ - type: map_at_3
571
+ value: 19.772000000000002
572
+ - type: map_at_5
573
+ value: 21.055
574
+ - type: mrr_at_1
575
+ value: 19.403000000000002
576
+ - type: mrr_at_10
577
+ value: 26.409
578
+ - type: mrr_at_100
579
+ value: 27.356
580
+ - type: mrr_at_1000
581
+ value: 27.441
582
+ - type: mrr_at_3
583
+ value: 24.108999999999998
584
+ - type: mrr_at_5
585
+ value: 25.427
586
+ - type: ndcg_at_1
587
+ value: 19.403000000000002
588
+ - type: ndcg_at_10
589
+ value: 26.474999999999998
590
+ - type: ndcg_at_100
591
+ value: 32.086
592
+ - type: ndcg_at_1000
593
+ value: 35.231
594
+ - type: ndcg_at_3
595
+ value: 22.289
596
+ - type: ndcg_at_5
597
+ value: 24.271
598
+ - type: precision_at_1
599
+ value: 19.403000000000002
600
+ - type: precision_at_10
601
+ value: 4.813
602
+ - type: precision_at_100
603
+ value: 0.8869999999999999
604
+ - type: precision_at_1000
605
+ value: 0.13
606
+ - type: precision_at_3
607
+ value: 10.531
608
+ - type: precision_at_5
609
+ value: 7.710999999999999
610
+ - type: recall_at_1
611
+ value: 15.601
612
+ - type: recall_at_10
613
+ value: 35.916
614
+ - type: recall_at_100
615
+ value: 60.8
616
+ - type: recall_at_1000
617
+ value: 83.245
618
+ - type: recall_at_3
619
+ value: 24.321
620
+ - type: recall_at_5
621
+ value: 29.372999999999998
622
+ - task:
623
+ type: Retrieval
624
+ dataset:
625
+ type: BeIR/cqadupstack
626
+ name: MTEB CQADupstackPhysicsRetrieval
627
+ config: default
628
+ split: test
629
+ revision: None
630
+ metrics:
631
+ - type: map_at_1
632
+ value: 25.522
633
+ - type: map_at_10
634
+ value: 34.854
635
+ - type: map_at_100
636
+ value: 36.269
637
+ - type: map_at_1000
638
+ value: 36.387
639
+ - type: map_at_3
640
+ value: 32.187
641
+ - type: map_at_5
642
+ value: 33.692
643
+ - type: mrr_at_1
644
+ value: 31.375999999999998
645
+ - type: mrr_at_10
646
+ value: 40.471000000000004
647
+ - type: mrr_at_100
648
+ value: 41.481
649
+ - type: mrr_at_1000
650
+ value: 41.533
651
+ - type: mrr_at_3
652
+ value: 38.274
653
+ - type: mrr_at_5
654
+ value: 39.612
655
+ - type: ndcg_at_1
656
+ value: 31.375999999999998
657
+ - type: ndcg_at_10
658
+ value: 40.298
659
+ - type: ndcg_at_100
660
+ value: 46.255
661
+ - type: ndcg_at_1000
662
+ value: 48.522
663
+ - type: ndcg_at_3
664
+ value: 36.049
665
+ - type: ndcg_at_5
666
+ value: 38.095
667
+ - type: precision_at_1
668
+ value: 31.375999999999998
669
+ - type: precision_at_10
670
+ value: 7.305000000000001
671
+ - type: precision_at_100
672
+ value: 1.201
673
+ - type: precision_at_1000
674
+ value: 0.157
675
+ - type: precision_at_3
676
+ value: 17.132
677
+ - type: precision_at_5
678
+ value: 12.107999999999999
679
+ - type: recall_at_1
680
+ value: 25.522
681
+ - type: recall_at_10
682
+ value: 50.988
683
+ - type: recall_at_100
684
+ value: 76.005
685
+ - type: recall_at_1000
686
+ value: 91.11200000000001
687
+ - type: recall_at_3
688
+ value: 38.808
689
+ - type: recall_at_5
690
+ value: 44.279
691
+ - task:
692
+ type: Retrieval
693
+ dataset:
694
+ type: BeIR/cqadupstack
695
+ name: MTEB CQADupstackProgrammersRetrieval
696
+ config: default
697
+ split: test
698
+ revision: None
699
+ metrics:
700
+ - type: map_at_1
701
+ value: 24.615000000000002
702
+ - type: map_at_10
703
+ value: 32.843
704
+ - type: map_at_100
705
+ value: 34.172999999999995
706
+ - type: map_at_1000
707
+ value: 34.286
708
+ - type: map_at_3
709
+ value: 30.125
710
+ - type: map_at_5
711
+ value: 31.495
712
+ - type: mrr_at_1
713
+ value: 30.023
714
+ - type: mrr_at_10
715
+ value: 38.106
716
+ - type: mrr_at_100
717
+ value: 39.01
718
+ - type: mrr_at_1000
719
+ value: 39.071
720
+ - type: mrr_at_3
721
+ value: 35.674
722
+ - type: mrr_at_5
723
+ value: 36.924
724
+ - type: ndcg_at_1
725
+ value: 30.023
726
+ - type: ndcg_at_10
727
+ value: 38.091
728
+ - type: ndcg_at_100
729
+ value: 43.771
730
+ - type: ndcg_at_1000
731
+ value: 46.315
732
+ - type: ndcg_at_3
733
+ value: 33.507
734
+ - type: ndcg_at_5
735
+ value: 35.304
736
+ - type: precision_at_1
737
+ value: 30.023
738
+ - type: precision_at_10
739
+ value: 6.837999999999999
740
+ - type: precision_at_100
741
+ value: 1.124
742
+ - type: precision_at_1000
743
+ value: 0.152
744
+ - type: precision_at_3
745
+ value: 15.562999999999999
746
+ - type: precision_at_5
747
+ value: 10.936
748
+ - type: recall_at_1
749
+ value: 24.615000000000002
750
+ - type: recall_at_10
751
+ value: 48.691
752
+ - type: recall_at_100
753
+ value: 72.884
754
+ - type: recall_at_1000
755
+ value: 90.387
756
+ - type: recall_at_3
757
+ value: 35.659
758
+ - type: recall_at_5
759
+ value: 40.602
760
+ - task:
761
+ type: Retrieval
762
+ dataset:
763
+ type: BeIR/cqadupstack
764
+ name: MTEB CQADupstackRetrieval
765
+ config: default
766
+ split: test
767
+ revision: None
768
+ metrics:
769
+ - type: map_at_1
770
+ value: 23.223666666666666
771
+ - type: map_at_10
772
+ value: 31.338166666666673
773
+ - type: map_at_100
774
+ value: 32.47358333333333
775
+ - type: map_at_1000
776
+ value: 32.5955
777
+ - type: map_at_3
778
+ value: 28.84133333333333
779
+ - type: map_at_5
780
+ value: 30.20808333333333
781
+ - type: mrr_at_1
782
+ value: 27.62483333333333
783
+ - type: mrr_at_10
784
+ value: 35.385916666666674
785
+ - type: mrr_at_100
786
+ value: 36.23325
787
+ - type: mrr_at_1000
788
+ value: 36.29966666666667
789
+ - type: mrr_at_3
790
+ value: 33.16583333333333
791
+ - type: mrr_at_5
792
+ value: 34.41983333333334
793
+ - type: ndcg_at_1
794
+ value: 27.62483333333333
795
+ - type: ndcg_at_10
796
+ value: 36.222
797
+ - type: ndcg_at_100
798
+ value: 41.29491666666666
799
+ - type: ndcg_at_1000
800
+ value: 43.85508333333333
801
+ - type: ndcg_at_3
802
+ value: 31.95116666666667
803
+ - type: ndcg_at_5
804
+ value: 33.88541666666667
805
+ - type: precision_at_1
806
+ value: 27.62483333333333
807
+ - type: precision_at_10
808
+ value: 6.339916666666667
809
+ - type: precision_at_100
810
+ value: 1.0483333333333333
811
+ - type: precision_at_1000
812
+ value: 0.14608333333333334
813
+ - type: precision_at_3
814
+ value: 14.726500000000003
815
+ - type: precision_at_5
816
+ value: 10.395
817
+ - type: recall_at_1
818
+ value: 23.223666666666666
819
+ - type: recall_at_10
820
+ value: 46.778999999999996
821
+ - type: recall_at_100
822
+ value: 69.27141666666667
823
+ - type: recall_at_1000
824
+ value: 87.27383333333334
825
+ - type: recall_at_3
826
+ value: 34.678749999999994
827
+ - type: recall_at_5
828
+ value: 39.79900000000001
829
+ - task:
830
+ type: Retrieval
831
+ dataset:
832
+ type: BeIR/cqadupstack
833
+ name: MTEB CQADupstackStatsRetrieval
834
+ config: default
835
+ split: test
836
+ revision: None
837
+ metrics:
838
+ - type: map_at_1
839
+ value: 21.677
840
+ - type: map_at_10
841
+ value: 27.828000000000003
842
+ - type: map_at_100
843
+ value: 28.538999999999998
844
+ - type: map_at_1000
845
+ value: 28.64
846
+ - type: map_at_3
847
+ value: 26.105
848
+ - type: map_at_5
849
+ value: 27.009
850
+ - type: mrr_at_1
851
+ value: 24.387
852
+ - type: mrr_at_10
853
+ value: 30.209999999999997
854
+ - type: mrr_at_100
855
+ value: 30.953000000000003
856
+ - type: mrr_at_1000
857
+ value: 31.029
858
+ - type: mrr_at_3
859
+ value: 28.707
860
+ - type: mrr_at_5
861
+ value: 29.610999999999997
862
+ - type: ndcg_at_1
863
+ value: 24.387
864
+ - type: ndcg_at_10
865
+ value: 31.378
866
+ - type: ndcg_at_100
867
+ value: 35.249
868
+ - type: ndcg_at_1000
869
+ value: 37.923
870
+ - type: ndcg_at_3
871
+ value: 28.213
872
+ - type: ndcg_at_5
873
+ value: 29.658
874
+ - type: precision_at_1
875
+ value: 24.387
876
+ - type: precision_at_10
877
+ value: 4.8309999999999995
878
+ - type: precision_at_100
879
+ value: 0.73
880
+ - type: precision_at_1000
881
+ value: 0.104
882
+ - type: precision_at_3
883
+ value: 12.168
884
+ - type: precision_at_5
885
+ value: 8.251999999999999
886
+ - type: recall_at_1
887
+ value: 21.677
888
+ - type: recall_at_10
889
+ value: 40.069
890
+ - type: recall_at_100
891
+ value: 58.077
892
+ - type: recall_at_1000
893
+ value: 77.97
894
+ - type: recall_at_3
895
+ value: 31.03
896
+ - type: recall_at_5
897
+ value: 34.838
898
+ - task:
899
+ type: Retrieval
900
+ dataset:
901
+ type: BeIR/cqadupstack
902
+ name: MTEB CQADupstackTexRetrieval
903
+ config: default
904
+ split: test
905
+ revision: None
906
+ metrics:
907
+ - type: map_at_1
908
+ value: 14.484
909
+ - type: map_at_10
910
+ value: 20.355
911
+ - type: map_at_100
912
+ value: 21.382
913
+ - type: map_at_1000
914
+ value: 21.511
915
+ - type: map_at_3
916
+ value: 18.448
917
+ - type: map_at_5
918
+ value: 19.451999999999998
919
+ - type: mrr_at_1
920
+ value: 17.584
921
+ - type: mrr_at_10
922
+ value: 23.825
923
+ - type: mrr_at_100
924
+ value: 24.704
925
+ - type: mrr_at_1000
926
+ value: 24.793000000000003
927
+ - type: mrr_at_3
928
+ value: 21.92
929
+ - type: mrr_at_5
930
+ value: 22.97
931
+ - type: ndcg_at_1
932
+ value: 17.584
933
+ - type: ndcg_at_10
934
+ value: 24.315
935
+ - type: ndcg_at_100
936
+ value: 29.354999999999997
937
+ - type: ndcg_at_1000
938
+ value: 32.641999999999996
939
+ - type: ndcg_at_3
940
+ value: 20.802
941
+ - type: ndcg_at_5
942
+ value: 22.335
943
+ - type: precision_at_1
944
+ value: 17.584
945
+ - type: precision_at_10
946
+ value: 4.443
947
+ - type: precision_at_100
948
+ value: 0.8160000000000001
949
+ - type: precision_at_1000
950
+ value: 0.128
951
+ - type: precision_at_3
952
+ value: 9.807
953
+ - type: precision_at_5
954
+ value: 7.0889999999999995
955
+ - type: recall_at_1
956
+ value: 14.484
957
+ - type: recall_at_10
958
+ value: 32.804
959
+ - type: recall_at_100
960
+ value: 55.679
961
+ - type: recall_at_1000
962
+ value: 79.63
963
+ - type: recall_at_3
964
+ value: 22.976
965
+ - type: recall_at_5
966
+ value: 26.939
967
+ - task:
968
+ type: Retrieval
969
+ dataset:
970
+ type: BeIR/cqadupstack
971
+ name: MTEB CQADupstackUnixRetrieval
972
+ config: default
973
+ split: test
974
+ revision: None
975
+ metrics:
976
+ - type: map_at_1
977
+ value: 22.983999999999998
978
+ - type: map_at_10
979
+ value: 30.812
980
+ - type: map_at_100
981
+ value: 31.938
982
+ - type: map_at_1000
983
+ value: 32.056000000000004
984
+ - type: map_at_3
985
+ value: 28.449999999999996
986
+ - type: map_at_5
987
+ value: 29.542
988
+ - type: mrr_at_1
989
+ value: 27.145999999999997
990
+ - type: mrr_at_10
991
+ value: 34.782999999999994
992
+ - type: mrr_at_100
993
+ value: 35.699
994
+ - type: mrr_at_1000
995
+ value: 35.768
996
+ - type: mrr_at_3
997
+ value: 32.572
998
+ - type: mrr_at_5
999
+ value: 33.607
1000
+ - type: ndcg_at_1
1001
+ value: 27.145999999999997
1002
+ - type: ndcg_at_10
1003
+ value: 35.722
1004
+ - type: ndcg_at_100
1005
+ value: 40.964
1006
+ - type: ndcg_at_1000
1007
+ value: 43.598
1008
+ - type: ndcg_at_3
1009
+ value: 31.379
1010
+ - type: ndcg_at_5
1011
+ value: 32.924
1012
+ - type: precision_at_1
1013
+ value: 27.145999999999997
1014
+ - type: precision_at_10
1015
+ value: 6.063000000000001
1016
+ - type: precision_at_100
1017
+ value: 0.9730000000000001
1018
+ - type: precision_at_1000
1019
+ value: 0.13
1020
+ - type: precision_at_3
1021
+ value: 14.366000000000001
1022
+ - type: precision_at_5
1023
+ value: 9.776
1024
+ - type: recall_at_1
1025
+ value: 22.983999999999998
1026
+ - type: recall_at_10
1027
+ value: 46.876
1028
+ - type: recall_at_100
1029
+ value: 69.646
1030
+ - type: recall_at_1000
1031
+ value: 88.305
1032
+ - type: recall_at_3
1033
+ value: 34.471000000000004
1034
+ - type: recall_at_5
1035
+ value: 38.76
1036
+ - task:
1037
+ type: Retrieval
1038
+ dataset:
1039
+ type: BeIR/cqadupstack
1040
+ name: MTEB CQADupstackWebmastersRetrieval
1041
+ config: default
1042
+ split: test
1043
+ revision: None
1044
+ metrics:
1045
+ - type: map_at_1
1046
+ value: 23.017000000000003
1047
+ - type: map_at_10
1048
+ value: 31.049
1049
+ - type: map_at_100
1050
+ value: 32.582
1051
+ - type: map_at_1000
1052
+ value: 32.817
1053
+ - type: map_at_3
1054
+ value: 28.303
1055
+ - type: map_at_5
1056
+ value: 29.854000000000003
1057
+ - type: mrr_at_1
1058
+ value: 27.866000000000003
1059
+ - type: mrr_at_10
1060
+ value: 35.56
1061
+ - type: mrr_at_100
1062
+ value: 36.453
1063
+ - type: mrr_at_1000
1064
+ value: 36.519
1065
+ - type: mrr_at_3
1066
+ value: 32.938
1067
+ - type: mrr_at_5
1068
+ value: 34.391
1069
+ - type: ndcg_at_1
1070
+ value: 27.866000000000003
1071
+ - type: ndcg_at_10
1072
+ value: 36.506
1073
+ - type: ndcg_at_100
1074
+ value: 42.344
1075
+ - type: ndcg_at_1000
1076
+ value: 45.213
1077
+ - type: ndcg_at_3
1078
+ value: 31.805
1079
+ - type: ndcg_at_5
1080
+ value: 33.933
1081
+ - type: precision_at_1
1082
+ value: 27.866000000000003
1083
+ - type: precision_at_10
1084
+ value: 7.016
1085
+ - type: precision_at_100
1086
+ value: 1.468
1087
+ - type: precision_at_1000
1088
+ value: 0.23900000000000002
1089
+ - type: precision_at_3
1090
+ value: 14.822
1091
+ - type: precision_at_5
1092
+ value: 10.791
1093
+ - type: recall_at_1
1094
+ value: 23.017000000000003
1095
+ - type: recall_at_10
1096
+ value: 47.053
1097
+ - type: recall_at_100
1098
+ value: 73.177
1099
+ - type: recall_at_1000
1100
+ value: 91.47800000000001
1101
+ - type: recall_at_3
1102
+ value: 33.675
1103
+ - type: recall_at_5
1104
+ value: 39.36
1105
+ - task:
1106
+ type: Retrieval
1107
+ dataset:
1108
+ type: BeIR/cqadupstack
1109
+ name: MTEB CQADupstackWordpressRetrieval
1110
+ config: default
1111
+ split: test
1112
+ revision: None
1113
+ metrics:
1114
+ - type: map_at_1
1115
+ value: 16.673
1116
+ - type: map_at_10
1117
+ value: 24.051000000000002
1118
+ - type: map_at_100
1119
+ value: 24.933
1120
+ - type: map_at_1000
1121
+ value: 25.06
1122
+ - type: map_at_3
1123
+ value: 21.446
1124
+ - type: map_at_5
1125
+ value: 23.064
1126
+ - type: mrr_at_1
1127
+ value: 18.115000000000002
1128
+ - type: mrr_at_10
1129
+ value: 25.927
1130
+ - type: mrr_at_100
1131
+ value: 26.718999999999998
1132
+ - type: mrr_at_1000
1133
+ value: 26.817999999999998
1134
+ - type: mrr_at_3
1135
+ value: 23.383000000000003
1136
+ - type: mrr_at_5
1137
+ value: 25.008999999999997
1138
+ - type: ndcg_at_1
1139
+ value: 18.115000000000002
1140
+ - type: ndcg_at_10
1141
+ value: 28.669
1142
+ - type: ndcg_at_100
1143
+ value: 33.282000000000004
1144
+ - type: ndcg_at_1000
1145
+ value: 36.481
1146
+ - type: ndcg_at_3
1147
+ value: 23.574
1148
+ - type: ndcg_at_5
1149
+ value: 26.340000000000003
1150
+ - type: precision_at_1
1151
+ value: 18.115000000000002
1152
+ - type: precision_at_10
1153
+ value: 4.769
1154
+ - type: precision_at_100
1155
+ value: 0.767
1156
+ - type: precision_at_1000
1157
+ value: 0.116
1158
+ - type: precision_at_3
1159
+ value: 10.351
1160
+ - type: precision_at_5
1161
+ value: 7.8
1162
+ - type: recall_at_1
1163
+ value: 16.673
1164
+ - type: recall_at_10
1165
+ value: 41.063
1166
+ - type: recall_at_100
1167
+ value: 62.851
1168
+ - type: recall_at_1000
1169
+ value: 86.701
1170
+ - type: recall_at_3
1171
+ value: 27.532
1172
+ - type: recall_at_5
1173
+ value: 34.076
1174
+ - task:
1175
+ type: Retrieval
1176
+ dataset:
1177
+ type: climate-fever
1178
+ name: MTEB ClimateFEVER
1179
+ config: default
1180
+ split: test
1181
+ revision: None
1182
+ metrics:
1183
+ - type: map_at_1
1184
+ value: 8.752
1185
+ - type: map_at_10
1186
+ value: 15.120000000000001
1187
+ - type: map_at_100
1188
+ value: 16.678
1189
+ - type: map_at_1000
1190
+ value: 16.854
1191
+ - type: map_at_3
1192
+ value: 12.603
1193
+ - type: map_at_5
1194
+ value: 13.918
1195
+ - type: mrr_at_1
1196
+ value: 19.283
1197
+ - type: mrr_at_10
1198
+ value: 29.145
1199
+ - type: mrr_at_100
1200
+ value: 30.281000000000002
1201
+ - type: mrr_at_1000
1202
+ value: 30.339
1203
+ - type: mrr_at_3
1204
+ value: 26.069
1205
+ - type: mrr_at_5
1206
+ value: 27.864
1207
+ - type: ndcg_at_1
1208
+ value: 19.283
1209
+ - type: ndcg_at_10
1210
+ value: 21.804000000000002
1211
+ - type: ndcg_at_100
1212
+ value: 28.576
1213
+ - type: ndcg_at_1000
1214
+ value: 32.063
1215
+ - type: ndcg_at_3
1216
+ value: 17.511
1217
+ - type: ndcg_at_5
1218
+ value: 19.112000000000002
1219
+ - type: precision_at_1
1220
+ value: 19.283
1221
+ - type: precision_at_10
1222
+ value: 6.873
1223
+ - type: precision_at_100
1224
+ value: 1.405
1225
+ - type: precision_at_1000
1226
+ value: 0.20500000000000002
1227
+ - type: precision_at_3
1228
+ value: 13.16
1229
+ - type: precision_at_5
1230
+ value: 10.189
1231
+ - type: recall_at_1
1232
+ value: 8.752
1233
+ - type: recall_at_10
1234
+ value: 27.004
1235
+ - type: recall_at_100
1236
+ value: 50.648
1237
+ - type: recall_at_1000
1238
+ value: 70.458
1239
+ - type: recall_at_3
1240
+ value: 16.461000000000002
1241
+ - type: recall_at_5
1242
+ value: 20.973
1243
+ - task:
1244
+ type: Retrieval
1245
+ dataset:
1246
+ type: dbpedia-entity
1247
+ name: MTEB DBPedia
1248
+ config: default
1249
+ split: test
1250
+ revision: None
1251
+ metrics:
1252
+ - type: map_at_1
1253
+ value: 6.81
1254
+ - type: map_at_10
1255
+ value: 14.056
1256
+ - type: map_at_100
1257
+ value: 18.961
1258
+ - type: map_at_1000
1259
+ value: 20.169
1260
+ - type: map_at_3
1261
+ value: 10.496
1262
+ - type: map_at_5
1263
+ value: 11.952
1264
+ - type: mrr_at_1
1265
+ value: 53.5
1266
+ - type: mrr_at_10
1267
+ value: 63.479
1268
+ - type: mrr_at_100
1269
+ value: 63.971999999999994
1270
+ - type: mrr_at_1000
1271
+ value: 63.993
1272
+ - type: mrr_at_3
1273
+ value: 61.541999999999994
1274
+ - type: mrr_at_5
1275
+ value: 62.778999999999996
1276
+ - type: ndcg_at_1
1277
+ value: 42.25
1278
+ - type: ndcg_at_10
1279
+ value: 31.471
1280
+ - type: ndcg_at_100
1281
+ value: 35.115
1282
+ - type: ndcg_at_1000
1283
+ value: 42.408
1284
+ - type: ndcg_at_3
1285
+ value: 35.458
1286
+ - type: ndcg_at_5
1287
+ value: 32.973
1288
+ - type: precision_at_1
1289
+ value: 53.5
1290
+ - type: precision_at_10
1291
+ value: 24.85
1292
+ - type: precision_at_100
1293
+ value: 7.79
1294
+ - type: precision_at_1000
1295
+ value: 1.599
1296
+ - type: precision_at_3
1297
+ value: 38.667
1298
+ - type: precision_at_5
1299
+ value: 31.55
1300
+ - type: recall_at_1
1301
+ value: 6.81
1302
+ - type: recall_at_10
1303
+ value: 19.344
1304
+ - type: recall_at_100
1305
+ value: 40.837
1306
+ - type: recall_at_1000
1307
+ value: 64.661
1308
+ - type: recall_at_3
1309
+ value: 11.942
1310
+ - type: recall_at_5
1311
+ value: 14.646
1312
+ - task:
1313
+ type: Classification
1314
+ dataset:
1315
+ type: mteb/emotion
1316
+ name: MTEB EmotionClassification
1317
+ config: default
1318
+ split: test
1319
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1320
+ metrics:
1321
+ - type: accuracy
1322
+ value: 44.64499999999999
1323
+ - type: f1
1324
+ value: 39.39106911352714
1325
+ - task:
1326
+ type: Retrieval
1327
+ dataset:
1328
+ type: fever
1329
+ name: MTEB FEVER
1330
+ config: default
1331
+ split: test
1332
+ revision: None
1333
+ metrics:
1334
+ - type: map_at_1
1335
+ value: 48.196
1336
+ - type: map_at_10
1337
+ value: 61.404
1338
+ - type: map_at_100
1339
+ value: 61.846000000000004
1340
+ - type: map_at_1000
1341
+ value: 61.866
1342
+ - type: map_at_3
1343
+ value: 58.975
1344
+ - type: map_at_5
1345
+ value: 60.525
1346
+ - type: mrr_at_1
1347
+ value: 52.025
1348
+ - type: mrr_at_10
1349
+ value: 65.43299999999999
1350
+ - type: mrr_at_100
1351
+ value: 65.80799999999999
1352
+ - type: mrr_at_1000
1353
+ value: 65.818
1354
+ - type: mrr_at_3
1355
+ value: 63.146
1356
+ - type: mrr_at_5
1357
+ value: 64.64
1358
+ - type: ndcg_at_1
1359
+ value: 52.025
1360
+ - type: ndcg_at_10
1361
+ value: 67.889
1362
+ - type: ndcg_at_100
1363
+ value: 69.864
1364
+ - type: ndcg_at_1000
1365
+ value: 70.337
1366
+ - type: ndcg_at_3
1367
+ value: 63.315
1368
+ - type: ndcg_at_5
1369
+ value: 65.91799999999999
1370
+ - type: precision_at_1
1371
+ value: 52.025
1372
+ - type: precision_at_10
1373
+ value: 9.182
1374
+ - type: precision_at_100
1375
+ value: 1.027
1376
+ - type: precision_at_1000
1377
+ value: 0.108
1378
+ - type: precision_at_3
1379
+ value: 25.968000000000004
1380
+ - type: precision_at_5
1381
+ value: 17.006
1382
+ - type: recall_at_1
1383
+ value: 48.196
1384
+ - type: recall_at_10
1385
+ value: 83.885
1386
+ - type: recall_at_100
1387
+ value: 92.671
1388
+ - type: recall_at_1000
1389
+ value: 96.018
1390
+ - type: recall_at_3
1391
+ value: 71.59
1392
+ - type: recall_at_5
1393
+ value: 77.946
1394
+ - task:
1395
+ type: Retrieval
1396
+ dataset:
1397
+ type: fiqa
1398
+ name: MTEB FiQA2018
1399
+ config: default
1400
+ split: test
1401
+ revision: None
1402
+ metrics:
1403
+ - type: map_at_1
1404
+ value: 15.193000000000001
1405
+ - type: map_at_10
1406
+ value: 25.168000000000003
1407
+ - type: map_at_100
1408
+ value: 27.017000000000003
1409
+ - type: map_at_1000
1410
+ value: 27.205000000000002
1411
+ - type: map_at_3
1412
+ value: 21.746
1413
+ - type: map_at_5
1414
+ value: 23.579
1415
+ - type: mrr_at_1
1416
+ value: 31.635999999999996
1417
+ - type: mrr_at_10
1418
+ value: 40.077
1419
+ - type: mrr_at_100
1420
+ value: 41.112
1421
+ - type: mrr_at_1000
1422
+ value: 41.160999999999994
1423
+ - type: mrr_at_3
1424
+ value: 37.937
1425
+ - type: mrr_at_5
1426
+ value: 39.18
1427
+ - type: ndcg_at_1
1428
+ value: 31.635999999999996
1429
+ - type: ndcg_at_10
1430
+ value: 32.298
1431
+ - type: ndcg_at_100
1432
+ value: 39.546
1433
+ - type: ndcg_at_1000
1434
+ value: 42.88
1435
+ - type: ndcg_at_3
1436
+ value: 29.221999999999998
1437
+ - type: ndcg_at_5
1438
+ value: 30.069000000000003
1439
+ - type: precision_at_1
1440
+ value: 31.635999999999996
1441
+ - type: precision_at_10
1442
+ value: 9.367
1443
+ - type: precision_at_100
1444
+ value: 1.645
1445
+ - type: precision_at_1000
1446
+ value: 0.22399999999999998
1447
+ - type: precision_at_3
1448
+ value: 20.01
1449
+ - type: precision_at_5
1450
+ value: 14.753
1451
+ - type: recall_at_1
1452
+ value: 15.193000000000001
1453
+ - type: recall_at_10
1454
+ value: 38.214999999999996
1455
+ - type: recall_at_100
1456
+ value: 65.95
1457
+ - type: recall_at_1000
1458
+ value: 85.85300000000001
1459
+ - type: recall_at_3
1460
+ value: 26.357000000000003
1461
+ - type: recall_at_5
1462
+ value: 31.319999999999997
1463
+ - task:
1464
+ type: Retrieval
1465
+ dataset:
1466
+ type: jinaai/ger_da_lir
1467
+ name: MTEB GerDaLIR
1468
+ config: default
1469
+ split: test
1470
+ revision: None
1471
+ metrics:
1472
+ - type: map_at_1
1473
+ value: 10.363
1474
+ - type: map_at_10
1475
+ value: 16.222
1476
+ - type: map_at_100
1477
+ value: 17.28
1478
+ - type: map_at_1000
1479
+ value: 17.380000000000003
1480
+ - type: map_at_3
1481
+ value: 14.054
1482
+ - type: map_at_5
1483
+ value: 15.203
1484
+ - type: mrr_at_1
1485
+ value: 11.644
1486
+ - type: mrr_at_10
1487
+ value: 17.625
1488
+ - type: mrr_at_100
1489
+ value: 18.608
1490
+ - type: mrr_at_1000
1491
+ value: 18.695999999999998
1492
+ - type: mrr_at_3
1493
+ value: 15.481
1494
+ - type: mrr_at_5
1495
+ value: 16.659
1496
+ - type: ndcg_at_1
1497
+ value: 11.628
1498
+ - type: ndcg_at_10
1499
+ value: 20.028000000000002
1500
+ - type: ndcg_at_100
1501
+ value: 25.505
1502
+ - type: ndcg_at_1000
1503
+ value: 28.288000000000004
1504
+ - type: ndcg_at_3
1505
+ value: 15.603
1506
+ - type: ndcg_at_5
1507
+ value: 17.642
1508
+ - type: precision_at_1
1509
+ value: 11.628
1510
+ - type: precision_at_10
1511
+ value: 3.5589999999999997
1512
+ - type: precision_at_100
1513
+ value: 0.664
1514
+ - type: precision_at_1000
1515
+ value: 0.092
1516
+ - type: precision_at_3
1517
+ value: 7.109999999999999
1518
+ - type: precision_at_5
1519
+ value: 5.401
1520
+ - type: recall_at_1
1521
+ value: 10.363
1522
+ - type: recall_at_10
1523
+ value: 30.586000000000002
1524
+ - type: recall_at_100
1525
+ value: 56.43
1526
+ - type: recall_at_1000
1527
+ value: 78.142
1528
+ - type: recall_at_3
1529
+ value: 18.651
1530
+ - type: recall_at_5
1531
+ value: 23.493
1532
+ - task:
1533
+ type: Retrieval
1534
+ dataset:
1535
+ type: deepset/germandpr
1536
+ name: MTEB GermanDPR
1537
+ config: default
1538
+ split: test
1539
+ revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
1540
+ metrics:
1541
+ - type: map_at_1
1542
+ value: 60.78
1543
+ - type: map_at_10
1544
+ value: 73.91499999999999
1545
+ - type: map_at_100
1546
+ value: 74.089
1547
+ - type: map_at_1000
1548
+ value: 74.09400000000001
1549
+ - type: map_at_3
1550
+ value: 71.87
1551
+ - type: map_at_5
1552
+ value: 73.37700000000001
1553
+ - type: mrr_at_1
1554
+ value: 60.78
1555
+ - type: mrr_at_10
1556
+ value: 73.91499999999999
1557
+ - type: mrr_at_100
1558
+ value: 74.089
1559
+ - type: mrr_at_1000
1560
+ value: 74.09400000000001
1561
+ - type: mrr_at_3
1562
+ value: 71.87
1563
+ - type: mrr_at_5
1564
+ value: 73.37700000000001
1565
+ - type: ndcg_at_1
1566
+ value: 60.78
1567
+ - type: ndcg_at_10
1568
+ value: 79.35600000000001
1569
+ - type: ndcg_at_100
1570
+ value: 80.077
1571
+ - type: ndcg_at_1000
1572
+ value: 80.203
1573
+ - type: ndcg_at_3
1574
+ value: 75.393
1575
+ - type: ndcg_at_5
1576
+ value: 78.077
1577
+ - type: precision_at_1
1578
+ value: 60.78
1579
+ - type: precision_at_10
1580
+ value: 9.59
1581
+ - type: precision_at_100
1582
+ value: 0.9900000000000001
1583
+ - type: precision_at_1000
1584
+ value: 0.1
1585
+ - type: precision_at_3
1586
+ value: 28.52
1587
+ - type: precision_at_5
1588
+ value: 18.4
1589
+ - type: recall_at_1
1590
+ value: 60.78
1591
+ - type: recall_at_10
1592
+ value: 95.902
1593
+ - type: recall_at_100
1594
+ value: 99.024
1595
+ - type: recall_at_1000
1596
+ value: 100.0
1597
+ - type: recall_at_3
1598
+ value: 85.56099999999999
1599
+ - type: recall_at_5
1600
+ value: 92.0
1601
+ - task:
1602
+ type: STS
1603
+ dataset:
1604
+ type: jinaai/german-STSbenchmark
1605
+ name: MTEB GermanSTSBenchmark
1606
+ config: default
1607
+ split: test
1608
+ revision: 49d9b423b996fea62b483f9ee6dfb5ec233515ca
1609
+ metrics:
1610
+ - type: cos_sim_pearson
1611
+ value: 88.49524420894356
1612
+ - type: cos_sim_spearman
1613
+ value: 88.32407839427714
1614
+ - type: euclidean_pearson
1615
+ value: 87.25098779877104
1616
+ - type: euclidean_spearman
1617
+ value: 88.22738098593608
1618
+ - type: manhattan_pearson
1619
+ value: 87.23872691839607
1620
+ - type: manhattan_spearman
1621
+ value: 88.2002968380165
1622
+ - task:
1623
+ type: Retrieval
1624
+ dataset:
1625
+ type: hotpotqa
1626
+ name: MTEB HotpotQA
1627
+ config: default
1628
+ split: test
1629
+ revision: None
1630
+ metrics:
1631
+ - type: map_at_1
1632
+ value: 31.81
1633
+ - type: map_at_10
1634
+ value: 46.238
1635
+ - type: map_at_100
1636
+ value: 47.141
1637
+ - type: map_at_1000
1638
+ value: 47.213
1639
+ - type: map_at_3
1640
+ value: 43.248999999999995
1641
+ - type: map_at_5
1642
+ value: 45.078
1643
+ - type: mrr_at_1
1644
+ value: 63.619
1645
+ - type: mrr_at_10
1646
+ value: 71.279
1647
+ - type: mrr_at_100
1648
+ value: 71.648
1649
+ - type: mrr_at_1000
1650
+ value: 71.665
1651
+ - type: mrr_at_3
1652
+ value: 69.76599999999999
1653
+ - type: mrr_at_5
1654
+ value: 70.743
1655
+ - type: ndcg_at_1
1656
+ value: 63.619
1657
+ - type: ndcg_at_10
1658
+ value: 55.38999999999999
1659
+ - type: ndcg_at_100
1660
+ value: 58.80800000000001
1661
+ - type: ndcg_at_1000
1662
+ value: 60.331999999999994
1663
+ - type: ndcg_at_3
1664
+ value: 50.727
1665
+ - type: ndcg_at_5
1666
+ value: 53.284
1667
+ - type: precision_at_1
1668
+ value: 63.619
1669
+ - type: precision_at_10
1670
+ value: 11.668000000000001
1671
+ - type: precision_at_100
1672
+ value: 1.434
1673
+ - type: precision_at_1000
1674
+ value: 0.164
1675
+ - type: precision_at_3
1676
+ value: 32.001000000000005
1677
+ - type: precision_at_5
1678
+ value: 21.223
1679
+ - type: recall_at_1
1680
+ value: 31.81
1681
+ - type: recall_at_10
1682
+ value: 58.339
1683
+ - type: recall_at_100
1684
+ value: 71.708
1685
+ - type: recall_at_1000
1686
+ value: 81.85
1687
+ - type: recall_at_3
1688
+ value: 48.001
1689
+ - type: recall_at_5
1690
+ value: 53.059
1691
+ - task:
1692
+ type: Classification
1693
+ dataset:
1694
+ type: mteb/imdb
1695
+ name: MTEB ImdbClassification
1696
+ config: default
1697
+ split: test
1698
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1699
+ metrics:
1700
+ - type: accuracy
1701
+ value: 68.60640000000001
1702
+ - type: ap
1703
+ value: 62.84296904042086
1704
+ - type: f1
1705
+ value: 68.50643633327537
1706
+ - task:
1707
+ type: Reranking
1708
+ dataset:
1709
+ type: jinaai/miracl
1710
+ name: MTEB MIRACL
1711
+ config: default
1712
+ split: test
1713
+ revision: 8741c3b61cd36ed9ca1b3d4203543a41793239e2
1714
+ metrics:
1715
+ - type: map
1716
+ value: 64.29704335389768
1717
+ - type: mrr
1718
+ value: 72.11962197159565
1719
+ - task:
1720
+ type: Classification
1721
+ dataset:
1722
+ type: mteb/mtop_domain
1723
+ name: MTEB MTOPDomainClassification (en)
1724
+ config: en
1725
+ split: test
1726
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1727
+ metrics:
1728
+ - type: accuracy
1729
+ value: 89.3844049247606
1730
+ - type: f1
1731
+ value: 89.2124328528015
1732
+ - task:
1733
+ type: Classification
1734
+ dataset:
1735
+ type: mteb/mtop_domain
1736
+ name: MTEB MTOPDomainClassification (de)
1737
+ config: de
1738
+ split: test
1739
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1740
+ metrics:
1741
+ - type: accuracy
1742
+ value: 88.36855452240067
1743
+ - type: f1
1744
+ value: 87.35458822097442
1745
+ - task:
1746
+ type: Classification
1747
+ dataset:
1748
+ type: mteb/mtop_intent
1749
+ name: MTEB MTOPIntentClassification (en)
1750
+ config: en
1751
+ split: test
1752
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1753
+ metrics:
1754
+ - type: accuracy
1755
+ value: 66.48654810761514
1756
+ - type: f1
1757
+ value: 50.07229882504409
1758
+ - task:
1759
+ type: Classification
1760
+ dataset:
1761
+ type: mteb/mtop_intent
1762
+ name: MTEB MTOPIntentClassification (de)
1763
+ config: de
1764
+ split: test
1765
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1766
+ metrics:
1767
+ - type: accuracy
1768
+ value: 63.832065370526905
1769
+ - type: f1
1770
+ value: 46.283579383385806
1771
+ - task:
1772
+ type: Classification
1773
+ dataset:
1774
+ type: mteb/amazon_massive_intent
1775
+ name: MTEB MassiveIntentClassification (de)
1776
+ config: de
1777
+ split: test
1778
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1779
+ metrics:
1780
+ - type: accuracy
1781
+ value: 63.89038332212509
1782
+ - type: f1
1783
+ value: 61.86279849685129
1784
+ - task:
1785
+ type: Classification
1786
+ dataset:
1787
+ type: mteb/amazon_massive_intent
1788
+ name: MTEB MassiveIntentClassification (en)
1789
+ config: en
1790
+ split: test
1791
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1792
+ metrics:
1793
+ - type: accuracy
1794
+ value: 69.11230665770006
1795
+ - type: f1
1796
+ value: 67.44780095350535
1797
+ - task:
1798
+ type: Classification
1799
+ dataset:
1800
+ type: mteb/amazon_massive_scenario
1801
+ name: MTEB MassiveScenarioClassification (de)
1802
+ config: de
1803
+ split: test
1804
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1805
+ metrics:
1806
+ - type: accuracy
1807
+ value: 71.25084061869536
1808
+ - type: f1
1809
+ value: 71.43965023016408
1810
+ - task:
1811
+ type: Classification
1812
+ dataset:
1813
+ type: mteb/amazon_massive_scenario
1814
+ name: MTEB MassiveScenarioClassification (en)
1815
+ config: en
1816
+ split: test
1817
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1818
+ metrics:
1819
+ - type: accuracy
1820
+ value: 73.73907195696032
1821
+ - type: f1
1822
+ value: 73.69920814839061
1823
+ - task:
1824
+ type: Clustering
1825
+ dataset:
1826
+ type: mteb/medrxiv-clustering-p2p
1827
+ name: MTEB MedrxivClusteringP2P
1828
+ config: default
1829
+ split: test
1830
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1831
+ metrics:
1832
+ - type: v_measure
1833
+ value: 31.32577306498249
1834
+ - task:
1835
+ type: Clustering
1836
+ dataset:
1837
+ type: mteb/medrxiv-clustering-s2s
1838
+ name: MTEB MedrxivClusteringS2S
1839
+ config: default
1840
+ split: test
1841
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1842
+ metrics:
1843
+ - type: v_measure
1844
+ value: 28.759349326367783
1845
+ - task:
1846
+ type: Reranking
1847
+ dataset:
1848
+ type: mteb/mind_small
1849
+ name: MTEB MindSmallReranking
1850
+ config: default
1851
+ split: test
1852
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1853
+ metrics:
1854
+ - type: map
1855
+ value: 30.401342674703425
1856
+ - type: mrr
1857
+ value: 31.384379585660987
1858
+ - task:
1859
+ type: Retrieval
1860
+ dataset:
1861
+ type: nfcorpus
1862
+ name: MTEB NFCorpus
1863
+ config: default
1864
+ split: test
1865
+ revision: None
1866
+ metrics:
1867
+ - type: map_at_1
1868
+ value: 4.855
1869
+ - type: map_at_10
1870
+ value: 10.01
1871
+ - type: map_at_100
1872
+ value: 12.461
1873
+ - type: map_at_1000
1874
+ value: 13.776
1875
+ - type: map_at_3
1876
+ value: 7.252
1877
+ - type: map_at_5
1878
+ value: 8.679
1879
+ - type: mrr_at_1
1880
+ value: 41.176
1881
+ - type: mrr_at_10
1882
+ value: 49.323
1883
+ - type: mrr_at_100
1884
+ value: 49.954
1885
+ - type: mrr_at_1000
1886
+ value: 49.997
1887
+ - type: mrr_at_3
1888
+ value: 46.904
1889
+ - type: mrr_at_5
1890
+ value: 48.375
1891
+ - type: ndcg_at_1
1892
+ value: 39.318999999999996
1893
+ - type: ndcg_at_10
1894
+ value: 28.607
1895
+ - type: ndcg_at_100
1896
+ value: 26.554
1897
+ - type: ndcg_at_1000
1898
+ value: 35.731
1899
+ - type: ndcg_at_3
1900
+ value: 32.897999999999996
1901
+ - type: ndcg_at_5
1902
+ value: 31.53
1903
+ - type: precision_at_1
1904
+ value: 41.176
1905
+ - type: precision_at_10
1906
+ value: 20.867
1907
+ - type: precision_at_100
1908
+ value: 6.796
1909
+ - type: precision_at_1000
1910
+ value: 1.983
1911
+ - type: precision_at_3
1912
+ value: 30.547
1913
+ - type: precision_at_5
1914
+ value: 27.245
1915
+ - type: recall_at_1
1916
+ value: 4.855
1917
+ - type: recall_at_10
1918
+ value: 14.08
1919
+ - type: recall_at_100
1920
+ value: 28.188000000000002
1921
+ - type: recall_at_1000
1922
+ value: 60.07900000000001
1923
+ - type: recall_at_3
1924
+ value: 7.947
1925
+ - type: recall_at_5
1926
+ value: 10.786
1927
+ - task:
1928
+ type: Retrieval
1929
+ dataset:
1930
+ type: nq
1931
+ name: MTEB NQ
1932
+ config: default
1933
+ split: test
1934
+ revision: None
1935
+ metrics:
1936
+ - type: map_at_1
1937
+ value: 26.906999999999996
1938
+ - type: map_at_10
1939
+ value: 41.147
1940
+ - type: map_at_100
1941
+ value: 42.269
1942
+ - type: map_at_1000
1943
+ value: 42.308
1944
+ - type: map_at_3
1945
+ value: 36.638999999999996
1946
+ - type: map_at_5
1947
+ value: 39.285
1948
+ - type: mrr_at_1
1949
+ value: 30.359
1950
+ - type: mrr_at_10
1951
+ value: 43.607
1952
+ - type: mrr_at_100
1953
+ value: 44.454
1954
+ - type: mrr_at_1000
1955
+ value: 44.481
1956
+ - type: mrr_at_3
1957
+ value: 39.644
1958
+ - type: mrr_at_5
1959
+ value: 42.061
1960
+ - type: ndcg_at_1
1961
+ value: 30.330000000000002
1962
+ - type: ndcg_at_10
1963
+ value: 48.899
1964
+ - type: ndcg_at_100
1965
+ value: 53.612
1966
+ - type: ndcg_at_1000
1967
+ value: 54.51200000000001
1968
+ - type: ndcg_at_3
1969
+ value: 40.262
1970
+ - type: ndcg_at_5
1971
+ value: 44.787
1972
+ - type: precision_at_1
1973
+ value: 30.330000000000002
1974
+ - type: precision_at_10
1975
+ value: 8.323
1976
+ - type: precision_at_100
1977
+ value: 1.0959999999999999
1978
+ - type: precision_at_1000
1979
+ value: 0.11800000000000001
1980
+ - type: precision_at_3
1981
+ value: 18.395
1982
+ - type: precision_at_5
1983
+ value: 13.627
1984
+ - type: recall_at_1
1985
+ value: 26.906999999999996
1986
+ - type: recall_at_10
1987
+ value: 70.215
1988
+ - type: recall_at_100
1989
+ value: 90.61200000000001
1990
+ - type: recall_at_1000
1991
+ value: 97.294
1992
+ - type: recall_at_3
1993
+ value: 47.784
1994
+ - type: recall_at_5
1995
+ value: 58.251
1996
+ - task:
1997
+ type: PairClassification
1998
+ dataset:
1999
+ type: paws-x
2000
+ name: MTEB PawsX
2001
+ config: default
2002
+ split: test
2003
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
2004
+ metrics:
2005
+ - type: cos_sim_accuracy
2006
+ value: 60.5
2007
+ - type: cos_sim_ap
2008
+ value: 57.606096528877494
2009
+ - type: cos_sim_f1
2010
+ value: 62.24240307369892
2011
+ - type: cos_sim_precision
2012
+ value: 45.27439024390244
2013
+ - type: cos_sim_recall
2014
+ value: 99.55307262569832
2015
+ - type: dot_accuracy
2016
+ value: 57.699999999999996
2017
+ - type: dot_ap
2018
+ value: 51.289351057160616
2019
+ - type: dot_f1
2020
+ value: 62.25953130465197
2021
+ - type: dot_precision
2022
+ value: 45.31568228105906
2023
+ - type: dot_recall
2024
+ value: 99.4413407821229
2025
+ - type: euclidean_accuracy
2026
+ value: 60.45
2027
+ - type: euclidean_ap
2028
+ value: 57.616461421424034
2029
+ - type: euclidean_f1
2030
+ value: 62.313697657913416
2031
+ - type: euclidean_precision
2032
+ value: 45.657826313052524
2033
+ - type: euclidean_recall
2034
+ value: 98.10055865921787
2035
+ - type: manhattan_accuracy
2036
+ value: 60.3
2037
+ - type: manhattan_ap
2038
+ value: 57.580565271667325
2039
+ - type: manhattan_f1
2040
+ value: 62.24240307369892
2041
+ - type: manhattan_precision
2042
+ value: 45.27439024390244
2043
+ - type: manhattan_recall
2044
+ value: 99.55307262569832
2045
+ - type: max_accuracy
2046
+ value: 60.5
2047
+ - type: max_ap
2048
+ value: 57.616461421424034
2049
+ - type: max_f1
2050
+ value: 62.313697657913416
2051
+ - task:
2052
+ type: Retrieval
2053
+ dataset:
2054
+ type: quora
2055
+ name: MTEB QuoraRetrieval
2056
+ config: default
2057
+ split: test
2058
+ revision: None
2059
+ metrics:
2060
+ - type: map_at_1
2061
+ value: 70.21300000000001
2062
+ - type: map_at_10
2063
+ value: 84.136
2064
+ - type: map_at_100
2065
+ value: 84.796
2066
+ - type: map_at_1000
2067
+ value: 84.812
2068
+ - type: map_at_3
2069
+ value: 81.182
2070
+ - type: map_at_5
2071
+ value: 83.027
2072
+ - type: mrr_at_1
2073
+ value: 80.91000000000001
2074
+ - type: mrr_at_10
2075
+ value: 87.155
2076
+ - type: mrr_at_100
2077
+ value: 87.27000000000001
2078
+ - type: mrr_at_1000
2079
+ value: 87.271
2080
+ - type: mrr_at_3
2081
+ value: 86.158
2082
+ - type: mrr_at_5
2083
+ value: 86.828
2084
+ - type: ndcg_at_1
2085
+ value: 80.88
2086
+ - type: ndcg_at_10
2087
+ value: 87.926
2088
+ - type: ndcg_at_100
2089
+ value: 89.223
2090
+ - type: ndcg_at_1000
2091
+ value: 89.321
2092
+ - type: ndcg_at_3
2093
+ value: 85.036
2094
+ - type: ndcg_at_5
2095
+ value: 86.614
2096
+ - type: precision_at_1
2097
+ value: 80.88
2098
+ - type: precision_at_10
2099
+ value: 13.350000000000001
2100
+ - type: precision_at_100
2101
+ value: 1.5310000000000001
2102
+ - type: precision_at_1000
2103
+ value: 0.157
2104
+ - type: precision_at_3
2105
+ value: 37.173
2106
+ - type: precision_at_5
2107
+ value: 24.476
2108
+ - type: recall_at_1
2109
+ value: 70.21300000000001
2110
+ - type: recall_at_10
2111
+ value: 95.12
2112
+ - type: recall_at_100
2113
+ value: 99.535
2114
+ - type: recall_at_1000
2115
+ value: 99.977
2116
+ - type: recall_at_3
2117
+ value: 86.833
2118
+ - type: recall_at_5
2119
+ value: 91.26100000000001
2120
+ - task:
2121
+ type: Clustering
2122
+ dataset:
2123
+ type: mteb/reddit-clustering
2124
+ name: MTEB RedditClustering
2125
+ config: default
2126
+ split: test
2127
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2128
+ metrics:
2129
+ - type: v_measure
2130
+ value: 47.754688783184875
2131
+ - task:
2132
+ type: Clustering
2133
+ dataset:
2134
+ type: mteb/reddit-clustering-p2p
2135
+ name: MTEB RedditClusteringP2P
2136
+ config: default
2137
+ split: test
2138
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
2139
+ metrics:
2140
+ - type: v_measure
2141
+ value: 54.875736374329364
2142
+ - task:
2143
+ type: Retrieval
2144
+ dataset:
2145
+ type: scidocs
2146
+ name: MTEB SCIDOCS
2147
+ config: default
2148
+ split: test
2149
+ revision: None
2150
+ metrics:
2151
+ - type: map_at_1
2152
+ value: 3.773
2153
+ - type: map_at_10
2154
+ value: 9.447
2155
+ - type: map_at_100
2156
+ value: 11.1
2157
+ - type: map_at_1000
2158
+ value: 11.37
2159
+ - type: map_at_3
2160
+ value: 6.787
2161
+ - type: map_at_5
2162
+ value: 8.077
2163
+ - type: mrr_at_1
2164
+ value: 18.5
2165
+ - type: mrr_at_10
2166
+ value: 28.227000000000004
2167
+ - type: mrr_at_100
2168
+ value: 29.445
2169
+ - type: mrr_at_1000
2170
+ value: 29.515
2171
+ - type: mrr_at_3
2172
+ value: 25.2
2173
+ - type: mrr_at_5
2174
+ value: 27.055
2175
+ - type: ndcg_at_1
2176
+ value: 18.5
2177
+ - type: ndcg_at_10
2178
+ value: 16.29
2179
+ - type: ndcg_at_100
2180
+ value: 23.250999999999998
2181
+ - type: ndcg_at_1000
2182
+ value: 28.445999999999998
2183
+ - type: ndcg_at_3
2184
+ value: 15.376000000000001
2185
+ - type: ndcg_at_5
2186
+ value: 13.528
2187
+ - type: precision_at_1
2188
+ value: 18.5
2189
+ - type: precision_at_10
2190
+ value: 8.51
2191
+ - type: precision_at_100
2192
+ value: 1.855
2193
+ - type: precision_at_1000
2194
+ value: 0.311
2195
+ - type: precision_at_3
2196
+ value: 14.533
2197
+ - type: precision_at_5
2198
+ value: 12.0
2199
+ - type: recall_at_1
2200
+ value: 3.773
2201
+ - type: recall_at_10
2202
+ value: 17.282
2203
+ - type: recall_at_100
2204
+ value: 37.645
2205
+ - type: recall_at_1000
2206
+ value: 63.138000000000005
2207
+ - type: recall_at_3
2208
+ value: 8.853
2209
+ - type: recall_at_5
2210
+ value: 12.168
2211
+ - task:
2212
+ type: STS
2213
+ dataset:
2214
+ type: mteb/sickr-sts
2215
+ name: MTEB SICK-R
2216
+ config: default
2217
+ split: test
2218
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2219
+ metrics:
2220
+ - type: cos_sim_pearson
2221
+ value: 85.32789517976525
2222
+ - type: cos_sim_spearman
2223
+ value: 80.32750384145629
2224
+ - type: euclidean_pearson
2225
+ value: 81.5025131452508
2226
+ - type: euclidean_spearman
2227
+ value: 80.24797115147175
2228
+ - type: manhattan_pearson
2229
+ value: 81.51634463412002
2230
+ - type: manhattan_spearman
2231
+ value: 80.24614721495055
2232
+ - task:
2233
+ type: STS
2234
+ dataset:
2235
+ type: mteb/sts12-sts
2236
+ name: MTEB STS12
2237
+ config: default
2238
+ split: test
2239
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2240
+ metrics:
2241
+ - type: cos_sim_pearson
2242
+ value: 88.47050448992432
2243
+ - type: cos_sim_spearman
2244
+ value: 80.58919997743621
2245
+ - type: euclidean_pearson
2246
+ value: 85.83258918113664
2247
+ - type: euclidean_spearman
2248
+ value: 80.97441389240902
2249
+ - type: manhattan_pearson
2250
+ value: 85.7798262013878
2251
+ - type: manhattan_spearman
2252
+ value: 80.97208703064196
2253
+ - task:
2254
+ type: STS
2255
+ dataset:
2256
+ type: mteb/sts13-sts
2257
+ name: MTEB STS13
2258
+ config: default
2259
+ split: test
2260
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2261
+ metrics:
2262
+ - type: cos_sim_pearson
2263
+ value: 85.95341439711532
2264
+ - type: cos_sim_spearman
2265
+ value: 86.59127484634989
2266
+ - type: euclidean_pearson
2267
+ value: 85.57850603454227
2268
+ - type: euclidean_spearman
2269
+ value: 86.47130477363419
2270
+ - type: manhattan_pearson
2271
+ value: 85.59387925447652
2272
+ - type: manhattan_spearman
2273
+ value: 86.50665427391583
2274
+ - task:
2275
+ type: STS
2276
+ dataset:
2277
+ type: mteb/sts14-sts
2278
+ name: MTEB STS14
2279
+ config: default
2280
+ split: test
2281
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2282
+ metrics:
2283
+ - type: cos_sim_pearson
2284
+ value: 85.39810909161844
2285
+ - type: cos_sim_spearman
2286
+ value: 82.98595295546008
2287
+ - type: euclidean_pearson
2288
+ value: 84.04681129969951
2289
+ - type: euclidean_spearman
2290
+ value: 82.98197460689866
2291
+ - type: manhattan_pearson
2292
+ value: 83.9918798171185
2293
+ - type: manhattan_spearman
2294
+ value: 82.91148131768082
2295
+ - task:
2296
+ type: STS
2297
+ dataset:
2298
+ type: mteb/sts15-sts
2299
+ name: MTEB STS15
2300
+ config: default
2301
+ split: test
2302
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 88.02072712147692
2306
+ - type: cos_sim_spearman
2307
+ value: 88.78821332623012
2308
+ - type: euclidean_pearson
2309
+ value: 88.12132045572747
2310
+ - type: euclidean_spearman
2311
+ value: 88.74273451067364
2312
+ - type: manhattan_pearson
2313
+ value: 88.05431550059166
2314
+ - type: manhattan_spearman
2315
+ value: 88.67610233020723
2316
+ - task:
2317
+ type: STS
2318
+ dataset:
2319
+ type: mteb/sts16-sts
2320
+ name: MTEB STS16
2321
+ config: default
2322
+ split: test
2323
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2324
+ metrics:
2325
+ - type: cos_sim_pearson
2326
+ value: 82.96134704624787
2327
+ - type: cos_sim_spearman
2328
+ value: 84.44062976314666
2329
+ - type: euclidean_pearson
2330
+ value: 84.03642536310323
2331
+ - type: euclidean_spearman
2332
+ value: 84.4535014579785
2333
+ - type: manhattan_pearson
2334
+ value: 83.92874228901483
2335
+ - type: manhattan_spearman
2336
+ value: 84.33634314951631
2337
+ - task:
2338
+ type: STS
2339
+ dataset:
2340
+ type: mteb/sts17-crosslingual-sts
2341
+ name: MTEB STS17 (en-de)
2342
+ config: en-de
2343
+ split: test
2344
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2345
+ metrics:
2346
+ - type: cos_sim_pearson
2347
+ value: 87.3154168064887
2348
+ - type: cos_sim_spearman
2349
+ value: 86.72393652571682
2350
+ - type: euclidean_pearson
2351
+ value: 86.04193246174164
2352
+ - type: euclidean_spearman
2353
+ value: 86.30482896608093
2354
+ - type: manhattan_pearson
2355
+ value: 85.95524084651859
2356
+ - type: manhattan_spearman
2357
+ value: 86.06031431994282
2358
+ - task:
2359
+ type: STS
2360
+ dataset:
2361
+ type: mteb/sts17-crosslingual-sts
2362
+ name: MTEB STS17 (en-en)
2363
+ config: en-en
2364
+ split: test
2365
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2366
+ metrics:
2367
+ - type: cos_sim_pearson
2368
+ value: 89.91079682750804
2369
+ - type: cos_sim_spearman
2370
+ value: 89.30961836617064
2371
+ - type: euclidean_pearson
2372
+ value: 88.86249564158628
2373
+ - type: euclidean_spearman
2374
+ value: 89.04772899592396
2375
+ - type: manhattan_pearson
2376
+ value: 88.85579791315043
2377
+ - type: manhattan_spearman
2378
+ value: 88.94190462541333
2379
+ - task:
2380
+ type: STS
2381
+ dataset:
2382
+ type: mteb/sts22-crosslingual-sts
2383
+ name: MTEB STS22 (en)
2384
+ config: en
2385
+ split: test
2386
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2387
+ metrics:
2388
+ - type: cos_sim_pearson
2389
+ value: 67.00558145551088
2390
+ - type: cos_sim_spearman
2391
+ value: 67.96601170393878
2392
+ - type: euclidean_pearson
2393
+ value: 67.87627043214336
2394
+ - type: euclidean_spearman
2395
+ value: 66.76402572303859
2396
+ - type: manhattan_pearson
2397
+ value: 67.88306560555452
2398
+ - type: manhattan_spearman
2399
+ value: 66.6273862035506
2400
+ - task:
2401
+ type: STS
2402
+ dataset:
2403
+ type: mteb/sts22-crosslingual-sts
2404
+ name: MTEB STS22 (de)
2405
+ config: de
2406
+ split: test
2407
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2408
+ metrics:
2409
+ - type: cos_sim_pearson
2410
+ value: 50.83759332748726
2411
+ - type: cos_sim_spearman
2412
+ value: 59.066344562858006
2413
+ - type: euclidean_pearson
2414
+ value: 50.08955848154131
2415
+ - type: euclidean_spearman
2416
+ value: 58.36517305855221
2417
+ - type: manhattan_pearson
2418
+ value: 50.05257267223111
2419
+ - type: manhattan_spearman
2420
+ value: 58.37570252804986
2421
+ - task:
2422
+ type: STS
2423
+ dataset:
2424
+ type: mteb/sts22-crosslingual-sts
2425
+ name: MTEB STS22 (de-en)
2426
+ config: de-en
2427
+ split: test
2428
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2429
+ metrics:
2430
+ - type: cos_sim_pearson
2431
+ value: 59.22749007956492
2432
+ - type: cos_sim_spearman
2433
+ value: 55.97282077657827
2434
+ - type: euclidean_pearson
2435
+ value: 62.10661533695752
2436
+ - type: euclidean_spearman
2437
+ value: 53.62780854854067
2438
+ - type: manhattan_pearson
2439
+ value: 62.37138085709719
2440
+ - type: manhattan_spearman
2441
+ value: 54.17556356828155
2442
+ - task:
2443
+ type: STS
2444
+ dataset:
2445
+ type: mteb/stsbenchmark-sts
2446
+ name: MTEB STSBenchmark
2447
+ config: default
2448
+ split: test
2449
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2450
+ metrics:
2451
+ - type: cos_sim_pearson
2452
+ value: 87.91145397065878
2453
+ - type: cos_sim_spearman
2454
+ value: 88.13960018389005
2455
+ - type: euclidean_pearson
2456
+ value: 87.67618876224006
2457
+ - type: euclidean_spearman
2458
+ value: 87.99119480810556
2459
+ - type: manhattan_pearson
2460
+ value: 87.67920297334753
2461
+ - type: manhattan_spearman
2462
+ value: 87.99113250064492
2463
+ - task:
2464
+ type: Reranking
2465
+ dataset:
2466
+ type: mteb/scidocs-reranking
2467
+ name: MTEB SciDocsRR
2468
+ config: default
2469
+ split: test
2470
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2471
+ metrics:
2472
+ - type: map
2473
+ value: 78.09133563707582
2474
+ - type: mrr
2475
+ value: 93.2415288052543
2476
+ - task:
2477
+ type: Retrieval
2478
+ dataset:
2479
+ type: scifact
2480
+ name: MTEB SciFact
2481
+ config: default
2482
+ split: test
2483
+ revision: None
2484
+ metrics:
2485
+ - type: map_at_1
2486
+ value: 47.760999999999996
2487
+ - type: map_at_10
2488
+ value: 56.424
2489
+ - type: map_at_100
2490
+ value: 57.24399999999999
2491
+ - type: map_at_1000
2492
+ value: 57.278
2493
+ - type: map_at_3
2494
+ value: 53.68000000000001
2495
+ - type: map_at_5
2496
+ value: 55.442
2497
+ - type: mrr_at_1
2498
+ value: 50.666999999999994
2499
+ - type: mrr_at_10
2500
+ value: 58.012
2501
+ - type: mrr_at_100
2502
+ value: 58.736
2503
+ - type: mrr_at_1000
2504
+ value: 58.769000000000005
2505
+ - type: mrr_at_3
2506
+ value: 56.056
2507
+ - type: mrr_at_5
2508
+ value: 57.321999999999996
2509
+ - type: ndcg_at_1
2510
+ value: 50.666999999999994
2511
+ - type: ndcg_at_10
2512
+ value: 60.67700000000001
2513
+ - type: ndcg_at_100
2514
+ value: 64.513
2515
+ - type: ndcg_at_1000
2516
+ value: 65.62400000000001
2517
+ - type: ndcg_at_3
2518
+ value: 56.186
2519
+ - type: ndcg_at_5
2520
+ value: 58.692
2521
+ - type: precision_at_1
2522
+ value: 50.666999999999994
2523
+ - type: precision_at_10
2524
+ value: 8.200000000000001
2525
+ - type: precision_at_100
2526
+ value: 1.023
2527
+ - type: precision_at_1000
2528
+ value: 0.11199999999999999
2529
+ - type: precision_at_3
2530
+ value: 21.889
2531
+ - type: precision_at_5
2532
+ value: 14.866999999999999
2533
+ - type: recall_at_1
2534
+ value: 47.760999999999996
2535
+ - type: recall_at_10
2536
+ value: 72.006
2537
+ - type: recall_at_100
2538
+ value: 89.767
2539
+ - type: recall_at_1000
2540
+ value: 98.833
2541
+ - type: recall_at_3
2542
+ value: 60.211000000000006
2543
+ - type: recall_at_5
2544
+ value: 66.3
2545
+ - task:
2546
+ type: PairClassification
2547
+ dataset:
2548
+ type: mteb/sprintduplicatequestions-pairclassification
2549
+ name: MTEB SprintDuplicateQuestions
2550
+ config: default
2551
+ split: test
2552
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2553
+ metrics:
2554
+ - type: cos_sim_accuracy
2555
+ value: 99.79009900990098
2556
+ - type: cos_sim_ap
2557
+ value: 94.86690691995835
2558
+ - type: cos_sim_f1
2559
+ value: 89.37875751503007
2560
+ - type: cos_sim_precision
2561
+ value: 89.5582329317269
2562
+ - type: cos_sim_recall
2563
+ value: 89.2
2564
+ - type: dot_accuracy
2565
+ value: 99.76336633663367
2566
+ - type: dot_ap
2567
+ value: 94.26453740761586
2568
+ - type: dot_f1
2569
+ value: 88.00783162016641
2570
+ - type: dot_precision
2571
+ value: 86.19367209971237
2572
+ - type: dot_recall
2573
+ value: 89.9
2574
+ - type: euclidean_accuracy
2575
+ value: 99.7940594059406
2576
+ - type: euclidean_ap
2577
+ value: 94.85459757524379
2578
+ - type: euclidean_f1
2579
+ value: 89.62779156327544
2580
+ - type: euclidean_precision
2581
+ value: 88.96551724137932
2582
+ - type: euclidean_recall
2583
+ value: 90.3
2584
+ - type: manhattan_accuracy
2585
+ value: 99.79009900990098
2586
+ - type: manhattan_ap
2587
+ value: 94.76971336654465
2588
+ - type: manhattan_f1
2589
+ value: 89.35323383084577
2590
+ - type: manhattan_precision
2591
+ value: 88.91089108910892
2592
+ - type: manhattan_recall
2593
+ value: 89.8
2594
+ - type: max_accuracy
2595
+ value: 99.7940594059406
2596
+ - type: max_ap
2597
+ value: 94.86690691995835
2598
+ - type: max_f1
2599
+ value: 89.62779156327544
2600
+ - task:
2601
+ type: Clustering
2602
+ dataset:
2603
+ type: mteb/stackexchange-clustering
2604
+ name: MTEB StackExchangeClustering
2605
+ config: default
2606
+ split: test
2607
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2608
+ metrics:
2609
+ - type: v_measure
2610
+ value: 55.38197670064987
2611
+ - task:
2612
+ type: Clustering
2613
+ dataset:
2614
+ type: mteb/stackexchange-clustering-p2p
2615
+ name: MTEB StackExchangeClusteringP2P
2616
+ config: default
2617
+ split: test
2618
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2619
+ metrics:
2620
+ - type: v_measure
2621
+ value: 33.08330158937971
2622
+ - task:
2623
+ type: Reranking
2624
+ dataset:
2625
+ type: mteb/stackoverflowdupquestions-reranking
2626
+ name: MTEB StackOverflowDupQuestions
2627
+ config: default
2628
+ split: test
2629
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2630
+ metrics:
2631
+ - type: map
2632
+ value: 49.50367079063226
2633
+ - type: mrr
2634
+ value: 50.30444943128768
2635
+ - task:
2636
+ type: Summarization
2637
+ dataset:
2638
+ type: mteb/summeval
2639
+ name: MTEB SummEval
2640
+ config: default
2641
+ split: test
2642
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2643
+ metrics:
2644
+ - type: cos_sim_pearson
2645
+ value: 30.37739520909561
2646
+ - type: cos_sim_spearman
2647
+ value: 31.548500943973913
2648
+ - type: dot_pearson
2649
+ value: 29.983610104303
2650
+ - type: dot_spearman
2651
+ value: 29.90185869098618
2652
+ - task:
2653
+ type: Retrieval
2654
+ dataset:
2655
+ type: trec-covid
2656
+ name: MTEB TRECCOVID
2657
+ config: default
2658
+ split: test
2659
+ revision: None
2660
+ metrics:
2661
+ - type: map_at_1
2662
+ value: 0.198
2663
+ - type: map_at_10
2664
+ value: 1.5810000000000002
2665
+ - type: map_at_100
2666
+ value: 9.064
2667
+ - type: map_at_1000
2668
+ value: 22.161
2669
+ - type: map_at_3
2670
+ value: 0.536
2671
+ - type: map_at_5
2672
+ value: 0.8370000000000001
2673
+ - type: mrr_at_1
2674
+ value: 80.0
2675
+ - type: mrr_at_10
2676
+ value: 86.75
2677
+ - type: mrr_at_100
2678
+ value: 86.799
2679
+ - type: mrr_at_1000
2680
+ value: 86.799
2681
+ - type: mrr_at_3
2682
+ value: 85.0
2683
+ - type: mrr_at_5
2684
+ value: 86.5
2685
+ - type: ndcg_at_1
2686
+ value: 73.0
2687
+ - type: ndcg_at_10
2688
+ value: 65.122
2689
+ - type: ndcg_at_100
2690
+ value: 51.853
2691
+ - type: ndcg_at_1000
2692
+ value: 47.275
2693
+ - type: ndcg_at_3
2694
+ value: 66.274
2695
+ - type: ndcg_at_5
2696
+ value: 64.826
2697
+ - type: precision_at_1
2698
+ value: 80.0
2699
+ - type: precision_at_10
2700
+ value: 70.19999999999999
2701
+ - type: precision_at_100
2702
+ value: 53.480000000000004
2703
+ - type: precision_at_1000
2704
+ value: 20.946
2705
+ - type: precision_at_3
2706
+ value: 71.333
2707
+ - type: precision_at_5
2708
+ value: 70.0
2709
+ - type: recall_at_1
2710
+ value: 0.198
2711
+ - type: recall_at_10
2712
+ value: 1.884
2713
+ - type: recall_at_100
2714
+ value: 12.57
2715
+ - type: recall_at_1000
2716
+ value: 44.208999999999996
2717
+ - type: recall_at_3
2718
+ value: 0.5890000000000001
2719
+ - type: recall_at_5
2720
+ value: 0.95
2721
+ - task:
2722
+ type: Clustering
2723
+ dataset:
2724
+ type: slvnwhrl/tenkgnad-clustering-p2p
2725
+ name: MTEB TenKGnadClusteringP2P
2726
+ config: default
2727
+ split: test
2728
+ revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
2729
+ metrics:
2730
+ - type: v_measure
2731
+ value: 42.84199261133083
2732
+ - task:
2733
+ type: Clustering
2734
+ dataset:
2735
+ type: slvnwhrl/tenkgnad-clustering-s2s
2736
+ name: MTEB TenKGnadClusteringS2S
2737
+ config: default
2738
+ split: test
2739
+ revision: 6cddbe003f12b9b140aec477b583ac4191f01786
2740
+ metrics:
2741
+ - type: v_measure
2742
+ value: 23.689557114798838
2743
+ - task:
2744
+ type: Retrieval
2745
+ dataset:
2746
+ type: webis-touche2020
2747
+ name: MTEB Touche2020
2748
+ config: default
2749
+ split: test
2750
+ revision: None
2751
+ metrics:
2752
+ - type: map_at_1
2753
+ value: 1.941
2754
+ - type: map_at_10
2755
+ value: 8.222
2756
+ - type: map_at_100
2757
+ value: 14.277999999999999
2758
+ - type: map_at_1000
2759
+ value: 15.790000000000001
2760
+ - type: map_at_3
2761
+ value: 4.4670000000000005
2762
+ - type: map_at_5
2763
+ value: 5.762
2764
+ - type: mrr_at_1
2765
+ value: 24.490000000000002
2766
+ - type: mrr_at_10
2767
+ value: 38.784
2768
+ - type: mrr_at_100
2769
+ value: 39.724
2770
+ - type: mrr_at_1000
2771
+ value: 39.724
2772
+ - type: mrr_at_3
2773
+ value: 33.333
2774
+ - type: mrr_at_5
2775
+ value: 37.415
2776
+ - type: ndcg_at_1
2777
+ value: 22.448999999999998
2778
+ - type: ndcg_at_10
2779
+ value: 21.026
2780
+ - type: ndcg_at_100
2781
+ value: 33.721000000000004
2782
+ - type: ndcg_at_1000
2783
+ value: 45.045
2784
+ - type: ndcg_at_3
2785
+ value: 20.053
2786
+ - type: ndcg_at_5
2787
+ value: 20.09
2788
+ - type: precision_at_1
2789
+ value: 24.490000000000002
2790
+ - type: precision_at_10
2791
+ value: 19.796
2792
+ - type: precision_at_100
2793
+ value: 7.469
2794
+ - type: precision_at_1000
2795
+ value: 1.48
2796
+ - type: precision_at_3
2797
+ value: 21.769
2798
+ - type: precision_at_5
2799
+ value: 21.224
2800
+ - type: recall_at_1
2801
+ value: 1.941
2802
+ - type: recall_at_10
2803
+ value: 14.915999999999999
2804
+ - type: recall_at_100
2805
+ value: 46.155
2806
+ - type: recall_at_1000
2807
+ value: 80.664
2808
+ - type: recall_at_3
2809
+ value: 5.629
2810
+ - type: recall_at_5
2811
+ value: 8.437
2812
+ - task:
2813
+ type: Classification
2814
+ dataset:
2815
+ type: mteb/toxic_conversations_50k
2816
+ name: MTEB ToxicConversationsClassification
2817
+ config: default
2818
+ split: test
2819
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2820
+ metrics:
2821
+ - type: accuracy
2822
+ value: 69.64800000000001
2823
+ - type: ap
2824
+ value: 12.914826731261094
2825
+ - type: f1
2826
+ value: 53.05213503422915
2827
+ - task:
2828
+ type: Classification
2829
+ dataset:
2830
+ type: mteb/tweet_sentiment_extraction
2831
+ name: MTEB TweetSentimentExtractionClassification
2832
+ config: default
2833
+ split: test
2834
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2835
+ metrics:
2836
+ - type: accuracy
2837
+ value: 60.427277872099594
2838
+ - type: f1
2839
+ value: 60.78292007556828
2840
+ - task:
2841
+ type: Clustering
2842
+ dataset:
2843
+ type: mteb/twentynewsgroups-clustering
2844
+ name: MTEB TwentyNewsgroupsClustering
2845
+ config: default
2846
+ split: test
2847
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2848
+ metrics:
2849
+ - type: v_measure
2850
+ value: 40.48134168406559
2851
+ - task:
2852
+ type: PairClassification
2853
+ dataset:
2854
+ type: mteb/twittersemeval2015-pairclassification
2855
+ name: MTEB TwitterSemEval2015
2856
+ config: default
2857
+ split: test
2858
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2859
+ metrics:
2860
+ - type: cos_sim_accuracy
2861
+ value: 84.79465935506944
2862
+ - type: cos_sim_ap
2863
+ value: 70.24589055290592
2864
+ - type: cos_sim_f1
2865
+ value: 65.0994575045208
2866
+ - type: cos_sim_precision
2867
+ value: 63.76518218623482
2868
+ - type: cos_sim_recall
2869
+ value: 66.49076517150397
2870
+ - type: dot_accuracy
2871
+ value: 84.63968528342374
2872
+ - type: dot_ap
2873
+ value: 69.84683095084355
2874
+ - type: dot_f1
2875
+ value: 64.50606169727523
2876
+ - type: dot_precision
2877
+ value: 59.1719885487778
2878
+ - type: dot_recall
2879
+ value: 70.89709762532982
2880
+ - type: euclidean_accuracy
2881
+ value: 84.76485664898374
2882
+ - type: euclidean_ap
2883
+ value: 70.20556438685551
2884
+ - type: euclidean_f1
2885
+ value: 65.06796614516543
2886
+ - type: euclidean_precision
2887
+ value: 63.29840319361277
2888
+ - type: euclidean_recall
2889
+ value: 66.93931398416886
2890
+ - type: manhattan_accuracy
2891
+ value: 84.72313286046374
2892
+ - type: manhattan_ap
2893
+ value: 70.17151475534308
2894
+ - type: manhattan_f1
2895
+ value: 65.31379180759113
2896
+ - type: manhattan_precision
2897
+ value: 62.17505366086334
2898
+ - type: manhattan_recall
2899
+ value: 68.7862796833773
2900
+ - type: max_accuracy
2901
+ value: 84.79465935506944
2902
+ - type: max_ap
2903
+ value: 70.24589055290592
2904
+ - type: max_f1
2905
+ value: 65.31379180759113
2906
+ - task:
2907
+ type: PairClassification
2908
+ dataset:
2909
+ type: mteb/twitterurlcorpus-pairclassification
2910
+ name: MTEB TwitterURLCorpus
2911
+ config: default
2912
+ split: test
2913
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2914
+ metrics:
2915
+ - type: cos_sim_accuracy
2916
+ value: 88.95874568246207
2917
+ - type: cos_sim_ap
2918
+ value: 85.82517548264127
2919
+ - type: cos_sim_f1
2920
+ value: 78.22288041466125
2921
+ - type: cos_sim_precision
2922
+ value: 75.33875338753387
2923
+ - type: cos_sim_recall
2924
+ value: 81.33661841700031
2925
+ - type: dot_accuracy
2926
+ value: 88.836496293709
2927
+ - type: dot_ap
2928
+ value: 85.53430720252186
2929
+ - type: dot_f1
2930
+ value: 78.10616085869725
2931
+ - type: dot_precision
2932
+ value: 74.73269555430501
2933
+ - type: dot_recall
2934
+ value: 81.79858330766862
2935
+ - type: euclidean_accuracy
2936
+ value: 88.92769821865176
2937
+ - type: euclidean_ap
2938
+ value: 85.65904346964223
2939
+ - type: euclidean_f1
2940
+ value: 77.98774074208407
2941
+ - type: euclidean_precision
2942
+ value: 73.72282795035315
2943
+ - type: euclidean_recall
2944
+ value: 82.77640899291654
2945
+ - type: manhattan_accuracy
2946
+ value: 88.86366282454303
2947
+ - type: manhattan_ap
2948
+ value: 85.61599642231819
2949
+ - type: manhattan_f1
2950
+ value: 78.01480509061737
2951
+ - type: manhattan_precision
2952
+ value: 74.10460685833044
2953
+ - type: manhattan_recall
2954
+ value: 82.36064059131506
2955
+ - type: max_accuracy
2956
+ value: 88.95874568246207
2957
+ - type: max_ap
2958
+ value: 85.82517548264127
2959
+ - type: max_f1
2960
+ value: 78.22288041466125
2961
+ - task:
2962
+ type: Retrieval
2963
+ dataset:
2964
+ type: None
2965
+ name: MTEB WikiCLIR
2966
+ config: default
2967
+ split: test
2968
+ revision: None
2969
+ metrics:
2970
+ - type: map_at_1
2971
+ value: 3.9539999999999997
2972
+ - type: map_at_10
2973
+ value: 7.407
2974
+ - type: map_at_100
2975
+ value: 8.677999999999999
2976
+ - type: map_at_1000
2977
+ value: 9.077
2978
+ - type: map_at_3
2979
+ value: 5.987
2980
+ - type: map_at_5
2981
+ value: 6.6979999999999995
2982
+ - type: mrr_at_1
2983
+ value: 35.65
2984
+ - type: mrr_at_10
2985
+ value: 45.097
2986
+ - type: mrr_at_100
2987
+ value: 45.83
2988
+ - type: mrr_at_1000
2989
+ value: 45.871
2990
+ - type: mrr_at_3
2991
+ value: 42.63
2992
+ - type: mrr_at_5
2993
+ value: 44.104
2994
+ - type: ndcg_at_1
2995
+ value: 29.215000000000003
2996
+ - type: ndcg_at_10
2997
+ value: 22.694
2998
+ - type: ndcg_at_100
2999
+ value: 22.242
3000
+ - type: ndcg_at_1000
3001
+ value: 27.069
3002
+ - type: ndcg_at_3
3003
+ value: 27.641
3004
+ - type: ndcg_at_5
3005
+ value: 25.503999999999998
3006
+ - type: precision_at_1
3007
+ value: 35.65
3008
+ - type: precision_at_10
3009
+ value: 12.795000000000002
3010
+ - type: precision_at_100
3011
+ value: 3.354
3012
+ - type: precision_at_1000
3013
+ value: 0.743
3014
+ - type: precision_at_3
3015
+ value: 23.403
3016
+ - type: precision_at_5
3017
+ value: 18.474
3018
+ - type: recall_at_1
3019
+ value: 3.9539999999999997
3020
+ - type: recall_at_10
3021
+ value: 11.301
3022
+ - type: recall_at_100
3023
+ value: 22.919999999999998
3024
+ - type: recall_at_1000
3025
+ value: 40.146
3026
+ - type: recall_at_3
3027
+ value: 7.146
3028
+ - type: recall_at_5
3029
+ value: 8.844000000000001
3030
+ - task:
3031
+ type: Retrieval
3032
+ dataset:
3033
+ type: jinaai/xmarket_de
3034
+ name: MTEB XMarket
3035
+ config: default
3036
+ split: test
3037
+ revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
3038
+ metrics:
3039
+ - type: map_at_1
3040
+ value: 4.872
3041
+ - type: map_at_10
3042
+ value: 10.658
3043
+ - type: map_at_100
3044
+ value: 13.422999999999998
3045
+ - type: map_at_1000
3046
+ value: 14.245
3047
+ - type: map_at_3
3048
+ value: 7.857
3049
+ - type: map_at_5
3050
+ value: 9.142999999999999
3051
+ - type: mrr_at_1
3052
+ value: 16.744999999999997
3053
+ - type: mrr_at_10
3054
+ value: 24.416
3055
+ - type: mrr_at_100
3056
+ value: 25.432
3057
+ - type: mrr_at_1000
3058
+ value: 25.502999999999997
3059
+ - type: mrr_at_3
3060
+ value: 22.096
3061
+ - type: mrr_at_5
3062
+ value: 23.421
3063
+ - type: ndcg_at_1
3064
+ value: 16.695999999999998
3065
+ - type: ndcg_at_10
3066
+ value: 18.66
3067
+ - type: ndcg_at_100
3068
+ value: 24.314
3069
+ - type: ndcg_at_1000
3070
+ value: 29.846
3071
+ - type: ndcg_at_3
3072
+ value: 17.041999999999998
3073
+ - type: ndcg_at_5
3074
+ value: 17.585
3075
+ - type: precision_at_1
3076
+ value: 16.695999999999998
3077
+ - type: precision_at_10
3078
+ value: 10.374
3079
+ - type: precision_at_100
3080
+ value: 3.988
3081
+ - type: precision_at_1000
3082
+ value: 1.1860000000000002
3083
+ - type: precision_at_3
3084
+ value: 14.21
3085
+ - type: precision_at_5
3086
+ value: 12.623000000000001
3087
+ - type: recall_at_1
3088
+ value: 4.872
3089
+ - type: recall_at_10
3090
+ value: 18.624
3091
+ - type: recall_at_100
3092
+ value: 40.988
3093
+ - type: recall_at_1000
3094
+ value: 65.33
3095
+ - type: recall_at_3
3096
+ value: 10.162
3097
+ - type: recall_at_5
3098
+ value: 13.517999999999999
3099
  ---
3100
+
3101
+
3102
+ <!-- TODO: add evaluation results here -->
3103
+ <br><br>
3104
+
3105
+ <p align="center">
3106
+ <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
3107
+ </p>
3108
+
3109
+
3110
+ <p align="center">
3111
+ <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
3112
+ </p>
3113
+
3114
+
3115
+ ## Intended Usage & Model Info
3116
+
3117
+ `jina-embeddings-v2-base-de` is a German/English bilingual text **embedding model** supporting **8192 sequence length**. Our model has the same architecture as `jina-embeddings-v2-base-en` and has 161 million parameters.
3118
+ We have designed it for high performance in cross-language applications and trained it specifically to support mixed German-English input without bias.
3119
+
3120
+ | Model | Language | Max Sequence Length | Dimension | Model Size |
3121
+ |:--------------------------------------------------------------------------------------:| :-----: |:-----: |:-----: |:----------:|
3122
+ | [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) | English | 8192 | 768 | 0.27GB |
3123
+ | [jina-embeddings-v2-base-de](https://huggingface.co/jinaai/jina-embeddings-v2-base-de) | German and English | 8192 | 768 | 0.31GB |
3124
+
3125
+
3126
+ You can use the embedding model either via the Jina AI's [Embedding platform](https://jina.ai/embeddings/), AWS SageMaker or in your private deployments.
3127
+
3128
+ ## Usage Jina Embedding API
3129
+
3130
+ The following code snippet shows the usage of the Jina Embedding API:
3131
+ ```
3132
+ curl https://api.jina.ai/v1/embeddings \
3133
+ -H "Content-Type: application/json" \
3134
+ -H "Authorization: Bearer jina_xxxxxxx" \
3135
+ -d '{
3136
+ "input": ["Ich spreche Deutsch", "or purely in English", "or like mixture of English and Deutsch"],
3137
+ "model": "jina-embeddings-v2-base-de"
3138
+ }'
3139
+
3140
+ ```
3141
+
3142
+ Get your free API key on: https://jina.ai/embeddings/
3143
+
3144
+ ## Opensource
3145
+
3146
+ We will add more information about this model and opensource the full model in a few days!
3147
+
3148
+ ## Contact
3149
+
3150
+ Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.