gmastrapas
commited on
Commit
·
b8b8f72
1
Parent(s):
2d6a2ce
feat: push last checkpoint
Browse files- .gitattributes +2 -0
- README.md +224 -7
- config.json +17 -130
- custom_st.py +35 -35
- model.safetensors +3 -0
- modules.json +8 -8
- preprocessor_config.json +1 -1
- pytorch_model.bin +2 -2
- tokenizer.json +2 -2
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.original filter=lfs diff=lfs merge=lfs -text
|
38 |
+
onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
## Usage
|
2 |
-
|
|
|
|
|
|
|
3 |
```python
|
4 |
-
!pip install transformers einops timm pillow
|
5 |
from transformers import AutoModel
|
6 |
|
7 |
# Initialize the model
|
8 |
-
model = AutoModel.from_pretrained('jinaai/jina-clip-v2
|
9 |
|
10 |
-
#
|
11 |
sentences = ['A blue cat', 'A red cat']
|
12 |
|
13 |
# Public image URLs
|
@@ -16,10 +109,12 @@ image_urls = [
|
|
16 |
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
|
17 |
]
|
18 |
|
|
|
|
|
|
|
19 |
# Encode text and images
|
20 |
-
|
21 |
-
|
22 |
-
image_embeddings = model.encode_image(image_urls, truncate_dim = truncate) # also accepts PIL.image, local filenames, dataURI
|
23 |
|
24 |
# Compute similarities
|
25 |
print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity
|
@@ -28,3 +123,125 @@ print(text_embeddings[0] @ image_embeddings[1].T) # text-image cross-modal simil
|
|
28 |
print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity
|
29 |
print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity
|
30 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
tags:
|
5 |
+
- xlm-roberta
|
6 |
+
- eva02
|
7 |
+
- clip
|
8 |
+
- feature-extraction
|
9 |
+
- sentence-similarity
|
10 |
+
- retrieval
|
11 |
+
- multimodal
|
12 |
+
- multi-modal
|
13 |
+
- crossmodal
|
14 |
+
- cross-modal
|
15 |
+
- mteb
|
16 |
+
- clip-benchmark
|
17 |
+
- vidore
|
18 |
+
- transformers
|
19 |
+
- sentence-transformers
|
20 |
+
- onnx
|
21 |
+
- safetensors
|
22 |
+
- transformers.js
|
23 |
+
language:
|
24 |
+
- multilingual
|
25 |
+
- ar
|
26 |
+
- bn
|
27 |
+
- da
|
28 |
+
- de
|
29 |
+
- el
|
30 |
+
- en
|
31 |
+
- es
|
32 |
+
- fi
|
33 |
+
- fr
|
34 |
+
- hi
|
35 |
+
- id
|
36 |
+
- it
|
37 |
+
- ja
|
38 |
+
- ka
|
39 |
+
- ko
|
40 |
+
- lv
|
41 |
+
- nl
|
42 |
+
- no
|
43 |
+
- pl
|
44 |
+
- pt
|
45 |
+
- ro
|
46 |
+
- ru
|
47 |
+
- sk
|
48 |
+
- sv
|
49 |
+
- th
|
50 |
+
- tr
|
51 |
+
- uk
|
52 |
+
- ur
|
53 |
+
- vi
|
54 |
+
- zh
|
55 |
+
inference: false
|
56 |
+
---
|
57 |
+
|
58 |
+
<br><br>
|
59 |
+
|
60 |
+
<p align="center">
|
61 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
62 |
+
</p>
|
63 |
+
|
64 |
+
|
65 |
+
<p align="center">
|
66 |
+
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
67 |
+
</p>
|
68 |
+
|
69 |
+
<p align="center">
|
70 |
+
<b>Jina CLIP: your CLIP model is also your text retriever!</b>
|
71 |
+
</p>
|
72 |
+
|
73 |
+
|
74 |
+
## Intended Usage & Model Info
|
75 |
+
|
76 |
+
`jina-clip-v2` is a state-of-the-art **multilingual and multimodal (text-image) embedding model**.
|
77 |
+
|
78 |
+
`jina-clip-v2` is a successor to the [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1) model and brings new features and capabilities, such as:
|
79 |
+
* *support for multiple languages* - the text tower now supports 30 languages, including `en`, `zh`, `de`, `ar`, `hi`, `es`
|
80 |
+
* *embedding truncation on both image and text vectors* - both towers are trained using [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which enables slicing the output vectors and in as a result computation and storage costs as well
|
81 |
+
* *visual document retrieval performance boost* - with an image resolution of 384 (compared to 224 on `jina-clip-v1`) the image tower can now capture finer visual details. This feature along with a more diverse training set enable the model to perform much better on visual document retrieval tasks, as is evident by the performance gains on the [ViDoRe Benchmark](https://huggingface.co/spaces/vidore/vidore-leaderboard), compared to `jina-clip-v1`
|
82 |
+
|
83 |
+
Similar to our predecessor model, `jina-clip-v2` bridges the gap between text-to-text and cross-modal retrieval. Via a single vector space, `jina-clip-v2` offers state-of-the-art performance on both tasks.
|
84 |
+
This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (MuRAG) applications, enabling seamless text-to-text and text-to-image searches within a single model.
|
85 |
+
|
86 |
+
|
87 |
+
## Data & Parameters
|
88 |
+
|
89 |
+
[Check out our paper](https://arxiv.org/abs/2405.20204). Updated technical report for v2 coming soon!
|
90 |
+
|
91 |
## Usage
|
92 |
+
|
93 |
+
1. The easiest way to start using jina-clip-v2 is via Jina AI's [Embeddings API](https://jina.ai/embeddings/).
|
94 |
+
2. Alternatively, you can use the model directly via the transformers/sentence-transformers package.
|
95 |
+
|
96 |
```python
|
97 |
+
# !pip install transformers einops timm pillow
|
98 |
from transformers import AutoModel
|
99 |
|
100 |
# Initialize the model
|
101 |
+
model = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
|
102 |
|
103 |
+
# Sentences
|
104 |
sentences = ['A blue cat', 'A red cat']
|
105 |
|
106 |
# Public image URLs
|
|
|
109 |
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
|
110 |
]
|
111 |
|
112 |
+
# Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
|
113 |
+
truncate_dim = 512
|
114 |
+
|
115 |
# Encode text and images
|
116 |
+
text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
|
117 |
+
image_embeddings = model.encode_image(image_urls, truncate_dim=truncate_dim) # also accepts PIL.image, local filenames, dataURI
|
|
|
118 |
|
119 |
# Compute similarities
|
120 |
print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity
|
|
|
123 |
print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity
|
124 |
print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity
|
125 |
```
|
126 |
+
|
127 |
+
or via sentence-transformers:
|
128 |
+
|
129 |
+
```python
|
130 |
+
# !pip install sentence-transformers
|
131 |
+
from sentence_transformers import SentenceTransformer
|
132 |
+
|
133 |
+
# Initialize the model
|
134 |
+
model = SentenceTransformer('jinaai/jina-clip-v2', trust_remote_code=True)
|
135 |
+
|
136 |
+
# Sentences
|
137 |
+
sentences = ['A blue cat', 'A red cat']
|
138 |
+
|
139 |
+
# Public image URLs
|
140 |
+
image_urls = [
|
141 |
+
'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
|
142 |
+
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
|
143 |
+
]
|
144 |
+
|
145 |
+
text_embeddings = model.encode(sentences)
|
146 |
+
image_embeddings = model.encode(image_urls)
|
147 |
+
```
|
148 |
+
|
149 |
+
JavaScript developers can use Jina CLIP via the [transformers.js](https://huggingface.co/docs/transformers.js) library. Note that to use this model, you need to install transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source using `npm install xenova/transformers.js#v3`.
|
150 |
+
|
151 |
+
```js
|
152 |
+
import { AutoTokenizer, CLIPTextModelWithProjection, AutoProcessor, CLIPVisionModelWithProjection, RawImage, cos_sim } from '@xenova/transformers';
|
153 |
+
|
154 |
+
// Load tokenizer and text model
|
155 |
+
const tokenizer = await AutoTokenizer.from_pretrained('jinaai/jina-clip-v2');
|
156 |
+
const text_model = await CLIPTextModelWithProjection.from_pretrained('jinaai/jina-clip-v2');
|
157 |
+
|
158 |
+
// Load processor and vision model
|
159 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch32');
|
160 |
+
const vision_model = await CLIPVisionModelWithProjection.from_pretrained('jinaai/jina-clip-v2');
|
161 |
+
|
162 |
+
// Run tokenization
|
163 |
+
const texts = ['A blue cat', 'A red cat'];
|
164 |
+
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
|
165 |
+
|
166 |
+
// Compute text embeddings
|
167 |
+
const { text_embeds } = await text_model(text_inputs);
|
168 |
+
|
169 |
+
// Read images and run processor
|
170 |
+
const urls = [
|
171 |
+
'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
|
172 |
+
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
|
173 |
+
];
|
174 |
+
const image = await Promise.all(urls.map(url => RawImage.read(url)));
|
175 |
+
const image_inputs = await processor(image);
|
176 |
+
|
177 |
+
// Compute vision embeddings
|
178 |
+
const { image_embeds } = await vision_model(image_inputs);
|
179 |
+
|
180 |
+
// Compute similarities
|
181 |
+
console.log(cos_sim(text_embeds[0].data, text_embeds[1].data)) // text embedding similarity
|
182 |
+
console.log(cos_sim(text_embeds[0].data, image_embeds[0].data)) // text-image cross-modal similarity
|
183 |
+
console.log(cos_sim(text_embeds[0].data, image_embeds[1].data)) // text-image cross-modal similarity
|
184 |
+
console.log(cos_sim(text_embeds[1].data, image_embeds[0].data)) // text-image cross-modal similarity
|
185 |
+
console.log(cos_sim(text_embeds[1].data, image_embeds[1].data)) // text-image cross-modal similarity
|
186 |
+
```
|
187 |
+
|
188 |
+
## Performance
|
189 |
+
|
190 |
+
### Text-Image Retrieval
|
191 |
+
|
192 |
+
Coming soon!
|
193 |
+
|
194 |
+
### Text-Text Retrieval
|
195 |
+
|
196 |
+
Coming soon!
|
197 |
+
|
198 |
+
## Contact
|
199 |
+
|
200 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
201 |
+
|
202 |
+
## Citation
|
203 |
+
|
204 |
+
If you find `jina-clip-v2` useful in your research, please cite the following paper:
|
205 |
+
|
206 |
+
```bibtex
|
207 |
+
@misc{2405.20204,
|
208 |
+
Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
|
209 |
+
Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
|
210 |
+
Year = {2024},
|
211 |
+
Eprint = {arXiv:2405.20204},
|
212 |
+
}
|
213 |
+
```
|
214 |
+
|
215 |
+
## FAQ
|
216 |
+
|
217 |
+
### I encounter this problem, what should I do?
|
218 |
+
|
219 |
+
```
|
220 |
+
ValueError: The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_clip.JinaCLIPConfig'> and you passed <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_cli.JinaCLIPConfig'>. Fix one of those so they match!
|
221 |
+
```
|
222 |
+
|
223 |
+
There was a bug in Transformers library between 4.40.x to 4.41.1. You can update transformers to >4.41.2 or <=4.40.0
|
224 |
+
|
225 |
+
### Given one query, how can I merge its text-text and text-image cosine similarity?
|
226 |
+
|
227 |
+
Our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity!
|
228 |
+
If you want to merge two scores, we recommended 2 ways:
|
229 |
+
|
230 |
+
1. weighted average of text-text sim and text-image sim:
|
231 |
+
|
232 |
+
```python
|
233 |
+
combined_scores = sim(text, text) + lambda * sim(text, image) # optimal lambda depends on your dataset, but in general lambda=2 can be a good choice.
|
234 |
+
```
|
235 |
+
|
236 |
+
2. apply z-score normalization before merging scores:
|
237 |
+
|
238 |
+
```python
|
239 |
+
# pseudo code
|
240 |
+
query_document_mean = np.mean(cos_sim_text_texts)
|
241 |
+
query_document_std = np.std(cos_sim_text_texts)
|
242 |
+
text_image_mean = np.mean(cos_sim_text_images)
|
243 |
+
text_image_std = np.std(cos_sim_text_images)
|
244 |
+
|
245 |
+
query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std
|
246 |
+
text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std
|
247 |
+
```
|
config.json
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
{
|
2 |
-
"_commit_hash": null,
|
3 |
-
"_name_or_path": "jinaai/jina-clip-v2-test",
|
4 |
"add_projections": false,
|
5 |
"architectures": [
|
6 |
"JinaCLIPModel"
|
@@ -11,166 +9,55 @@
|
|
11 |
},
|
12 |
"initializer_factor": 1.0,
|
13 |
"logit_scale_init_value": 2.6592,
|
|
|
14 |
"model_type": "jina_clip",
|
15 |
"projection_dim": 1024,
|
16 |
-
"matryoshka_dimensions": [32, 64, 128, 256, 512, 768, 1024],
|
17 |
"text_config": {
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"architectures": null,
|
21 |
-
"bad_words_ids": null,
|
22 |
-
"begin_suppress_tokens": null,
|
23 |
-
"bos_token_id": null,
|
24 |
-
"chunk_size_feed_forward": 0,
|
25 |
-
"cross_attention_hidden_size": null,
|
26 |
-
"decoder_start_token_id": null,
|
27 |
-
"diversity_penalty": 0.0,
|
28 |
-
"do_sample": false,
|
29 |
-
"early_stopping": false,
|
30 |
"embed_dim": 1024,
|
31 |
-
"encoder_no_repeat_ngram_size": 0,
|
32 |
-
"eos_token_id": null,
|
33 |
-
"exponential_decay_length_penalty": null,
|
34 |
-
"finetuning_task": null,
|
35 |
-
"forced_bos_token_id": null,
|
36 |
-
"forced_eos_token_id": null,
|
37 |
"hf_model_config_kwargs": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"use_flash_attn": false
|
39 |
},
|
40 |
-
"hf_model_name_or_path": "jinaai/jina-
|
41 |
-
"id2label": {
|
42 |
-
"0": "LABEL_0",
|
43 |
-
"1": "LABEL_1"
|
44 |
-
},
|
45 |
-
"is_decoder": false,
|
46 |
-
"is_encoder_decoder": false,
|
47 |
-
"label2id": {
|
48 |
-
"LABEL_0": 0,
|
49 |
-
"LABEL_1": 1
|
50 |
-
},
|
51 |
-
"length_penalty": 1.0,
|
52 |
-
"max_length": 20,
|
53 |
-
"min_length": 0,
|
54 |
"model_type": "jina_clip_text",
|
55 |
-
"no_repeat_ngram_size": 0,
|
56 |
-
"num_beam_groups": 1,
|
57 |
-
"num_beams": 1,
|
58 |
-
"num_return_sequences": 1,
|
59 |
-
"output_attentions": false,
|
60 |
-
"output_hidden_states": false,
|
61 |
-
"output_scores": false,
|
62 |
-
"pad_token_id": null,
|
63 |
"pooler_type": "mean_pooler",
|
64 |
-
"prefix": null,
|
65 |
-
"problem_type": null,
|
66 |
"proj_bias": false,
|
67 |
-
"proj_type": null
|
68 |
-
"pruned_heads": {},
|
69 |
-
"remove_invalid_values": false,
|
70 |
-
"repetition_penalty": 1.0,
|
71 |
-
"return_dict": true,
|
72 |
-
"return_dict_in_generate": false,
|
73 |
-
"sep_token_id": null,
|
74 |
-
"suppress_tokens": null,
|
75 |
-
"task_specific_params": null,
|
76 |
-
"temperature": 1.0,
|
77 |
-
"tf_legacy_loss": false,
|
78 |
-
"tie_encoder_decoder": false,
|
79 |
-
"tie_word_embeddings": true,
|
80 |
-
"tokenizer_class": null,
|
81 |
-
"top_k": 50,
|
82 |
-
"top_p": 1.0,
|
83 |
-
"torch_dtype": null,
|
84 |
-
"torchscript": false,
|
85 |
-
"transformers_version": "4.42.4",
|
86 |
-
"typical_p": 1.0,
|
87 |
-
"use_bfloat16": false
|
88 |
},
|
89 |
-
"
|
90 |
-
"transformers_version": null,
|
91 |
"use_text_flash_attn": null,
|
92 |
"use_vision_xformers": null,
|
93 |
"vision_config": {
|
94 |
-
"_name_or_path": "",
|
95 |
-
"add_cross_attention": false,
|
96 |
-
"architectures": null,
|
97 |
-
"bad_words_ids": null,
|
98 |
-
"begin_suppress_tokens": null,
|
99 |
-
"bos_token_id": null,
|
100 |
-
"chunk_size_feed_forward": 0,
|
101 |
-
"cross_attention_hidden_size": null,
|
102 |
-
"decoder_start_token_id": null,
|
103 |
-
"diversity_penalty": 0.0,
|
104 |
-
"do_sample": false,
|
105 |
-
"drop_path_rate": 0.0,
|
106 |
-
"early_stopping": false,
|
107 |
"embed_dim": 1024,
|
108 |
-
"encoder_no_repeat_ngram_size": 0,
|
109 |
-
"eos_token_id": null,
|
110 |
-
"exponential_decay_length_penalty": null,
|
111 |
-
"finetuning_task": null,
|
112 |
-
"forced_bos_token_id": null,
|
113 |
-
"forced_eos_token_id": null,
|
114 |
"fused_layer_norm": false,
|
115 |
"head_width": 64,
|
116 |
-
"id2label": {
|
117 |
-
"0": "LABEL_0",
|
118 |
-
"1": "LABEL_1"
|
119 |
-
},
|
120 |
"image_size": 384,
|
121 |
"intp_freq": true,
|
122 |
-
"is_decoder": false,
|
123 |
-
"is_encoder_decoder": false,
|
124 |
-
"label2id": {
|
125 |
-
"LABEL_0": 0,
|
126 |
-
"LABEL_1": 1
|
127 |
-
},
|
128 |
"layers": 24,
|
129 |
-
"length_penalty": 1.0,
|
130 |
"ls_init_value": null,
|
131 |
-
"max_length": 20,
|
132 |
-
"min_length": 0,
|
133 |
"mlp_ratio": 2.6667,
|
134 |
"model_type": "jina_clip_vision",
|
135 |
"naive_swiglu": true,
|
136 |
-
"no_repeat_ngram_size": 0,
|
137 |
-
"num_beam_groups": 1,
|
138 |
-
"num_beams": 1,
|
139 |
-
"num_return_sequences": 1,
|
140 |
-
"output_attentions": false,
|
141 |
-
"output_hidden_states": false,
|
142 |
-
"output_scores": false,
|
143 |
-
"pad_token_id": null,
|
144 |
"patch_dropout": 0.1,
|
145 |
"patch_size": 14,
|
146 |
"post_norm": false,
|
147 |
-
"prefix": null,
|
148 |
-
"problem_type": null,
|
149 |
"proj_type": null,
|
150 |
-
"pruned_heads": {},
|
151 |
"pt_hw_seq_len": 16,
|
152 |
"qkv_bias": true,
|
153 |
-
"remove_invalid_values": false,
|
154 |
-
"repetition_penalty": 1.0,
|
155 |
-
"return_dict": true,
|
156 |
-
"return_dict_in_generate": false,
|
157 |
"rope_embeddings": true,
|
158 |
-
"sep_token_id": null,
|
159 |
"subln": true,
|
160 |
-
"suppress_tokens": null,
|
161 |
-
"task_specific_params": null,
|
162 |
-
"temperature": 1.0,
|
163 |
-
"tf_legacy_loss": false,
|
164 |
-
"tie_encoder_decoder": false,
|
165 |
-
"tie_word_embeddings": true,
|
166 |
-
"tokenizer_class": null,
|
167 |
-
"top_k": 50,
|
168 |
-
"top_p": 1.0,
|
169 |
-
"torch_dtype": null,
|
170 |
-
"torchscript": false,
|
171 |
-
"transformers_version": "4.42.4",
|
172 |
-
"typical_p": 1.0,
|
173 |
-
"use_bfloat16": false,
|
174 |
"width": 1024,
|
175 |
"x_attention": false
|
176 |
}
|
|
|
1 |
{
|
|
|
|
|
2 |
"add_projections": false,
|
3 |
"architectures": [
|
4 |
"JinaCLIPModel"
|
|
|
9 |
},
|
10 |
"initializer_factor": 1.0,
|
11 |
"logit_scale_init_value": 2.6592,
|
12 |
+
"matryoshka_dimensions": [32, 64, 128, 256, 512, 768, 1024],
|
13 |
"model_type": "jina_clip",
|
14 |
"projection_dim": 1024,
|
|
|
15 |
"text_config": {
|
16 |
+
"default_instruction_task": null,
|
17 |
+
"default_lora_task": "retrieval.query",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"embed_dim": 1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"hf_model_config_kwargs": {
|
20 |
+
"load_trained_adapters": false,
|
21 |
+
"lora_adaptations": [
|
22 |
+
"retrieval.query"
|
23 |
+
],
|
24 |
+
"lora_alpha": 4,
|
25 |
+
"lora_dropout_p": 0.0,
|
26 |
+
"lora_main_params_trainable": false,
|
27 |
+
"lora_rank": 4,
|
28 |
+
"task_instructions": {
|
29 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: "
|
30 |
+
},
|
31 |
"use_flash_attn": false
|
32 |
},
|
33 |
+
"hf_model_name_or_path": "jinaai/jina-embeddings-v3",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
"model_type": "jina_clip_text",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"pooler_type": "mean_pooler",
|
|
|
|
|
36 |
"proj_bias": false,
|
37 |
+
"proj_type": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
},
|
39 |
+
"truncate_dim": null,
|
|
|
40 |
"use_text_flash_attn": null,
|
41 |
"use_vision_xformers": null,
|
42 |
"vision_config": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"embed_dim": 1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"fused_layer_norm": false,
|
45 |
"head_width": 64,
|
|
|
|
|
|
|
|
|
46 |
"image_size": 384,
|
47 |
"intp_freq": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"layers": 24,
|
|
|
49 |
"ls_init_value": null,
|
|
|
|
|
50 |
"mlp_ratio": 2.6667,
|
51 |
"model_type": "jina_clip_vision",
|
52 |
"naive_swiglu": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
"patch_dropout": 0.1,
|
54 |
"patch_size": 14,
|
55 |
"post_norm": false,
|
|
|
|
|
56 |
"proj_type": null,
|
|
|
57 |
"pt_hw_seq_len": 16,
|
58 |
"qkv_bias": true,
|
|
|
|
|
|
|
|
|
59 |
"rope_embeddings": true,
|
|
|
60 |
"subln": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"width": 1024,
|
62 |
"x_attention": false
|
63 |
}
|
custom_st.py
CHANGED
@@ -2,7 +2,7 @@ import base64
|
|
2 |
import json
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
-
from typing import Any, Dict, List, Optional,
|
6 |
|
7 |
import requests
|
8 |
import torch
|
@@ -45,7 +45,7 @@ class Transformer(nn.Module):
|
|
45 |
tokenizer_name_or_path: str = None,
|
46 |
) -> None:
|
47 |
super(Transformer, self).__init__()
|
48 |
-
self.config_keys = [
|
49 |
self.do_lower_case = do_lower_case
|
50 |
if model_args is None:
|
51 |
model_args = {}
|
@@ -60,9 +60,8 @@ class Transformer(nn.Module):
|
|
60 |
self.jina_clip = AutoModel.from_pretrained(
|
61 |
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
tokenizer_args["model_max_length"] = max_seq_length
|
66 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
67 |
(
|
68 |
tokenizer_name_or_path
|
@@ -85,9 +84,9 @@ class Transformer(nn.Module):
|
|
85 |
# No max_seq_length set. Try to infer from model
|
86 |
if max_seq_length is None:
|
87 |
if (
|
88 |
-
hasattr(self.jina_clip,
|
89 |
-
and hasattr(self.jina_clip.config,
|
90 |
-
and hasattr(self.tokenizer,
|
91 |
):
|
92 |
max_seq_length = min(
|
93 |
self.jina_clip.config.max_position_embeddings,
|
@@ -99,23 +98,22 @@ class Transformer(nn.Module):
|
|
99 |
if tokenizer_name_or_path is not None:
|
100 |
self.jina_clip.config.tokenizer_class = self.tokenizer.__class__.__name__
|
101 |
|
102 |
-
def forward(
|
103 |
-
self, features: Dict[str, torch.Tensor]
|
104 |
-
) -> Dict[str, torch.Tensor]:
|
105 |
"""Returns token_embeddings, cls_token"""
|
106 |
-
if
|
107 |
embedding = self.jina_clip.get_text_features(
|
108 |
-
input_ids=features[
|
109 |
)
|
110 |
else:
|
111 |
embedding = self.jina_clip.get_image_features(
|
112 |
-
pixel_values=features[
|
113 |
)
|
114 |
-
return {
|
115 |
|
116 |
def get_word_embedding_dimension(self) -> int:
|
117 |
return self.config.text_config.embed_dim
|
118 |
|
|
|
119 |
def decode_data_image(data_image_str):
|
120 |
header, data = data_image_str.split(',', 1)
|
121 |
image_data = base64.b64decode(data)
|
@@ -135,10 +133,10 @@ class Transformer(nn.Module):
|
|
135 |
elif sample.startswith('data:image/'):
|
136 |
images.append(self.decode_data_image(sample).convert('RGB'))
|
137 |
else:
|
138 |
-
# TODO: Make sure that Image.open fails for non-image files
|
139 |
try:
|
140 |
images.append(Image.open(sample).convert('RGB'))
|
141 |
-
except:
|
|
|
142 |
texts.append(sample)
|
143 |
elif isinstance(sample, Image.Image):
|
144 |
images.append(sample.convert('RGB'))
|
@@ -150,8 +148,8 @@ class Transformer(nn.Module):
|
|
150 |
return self.tokenizer(
|
151 |
texts,
|
152 |
padding=padding,
|
153 |
-
truncation=
|
154 |
-
return_tensors=
|
155 |
max_length=self.max_seq_length,
|
156 |
)
|
157 |
elif images:
|
@@ -166,16 +164,16 @@ class Transformer(nn.Module):
|
|
166 |
self.preprocessor.save_pretrained(output_path)
|
167 |
|
168 |
@staticmethod
|
169 |
-
def load(input_path: str) ->
|
170 |
# Old classes used other config names than 'sentence_bert_config.json'
|
171 |
for config_name in [
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
]:
|
180 |
sbert_config_path = os.path.join(input_path, config_name)
|
181 |
if os.path.exists(sbert_config_path):
|
@@ -183,14 +181,16 @@ class Transformer(nn.Module):
|
|
183 |
|
184 |
with open(sbert_config_path) as fIn:
|
185 |
config = json.load(fIn)
|
|
|
186 |
# Don't allow configs to set trust_remote_code
|
187 |
-
if
|
188 |
-
config[
|
189 |
if (
|
190 |
-
|
191 |
-
and
|
192 |
):
|
193 |
-
config[
|
194 |
-
if
|
195 |
-
config[
|
196 |
-
|
|
|
|
2 |
import json
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
+
from typing import Any, Dict, List, Optional, Union
|
6 |
|
7 |
import requests
|
8 |
import torch
|
|
|
45 |
tokenizer_name_or_path: str = None,
|
46 |
) -> None:
|
47 |
super(Transformer, self).__init__()
|
48 |
+
self.config_keys = ['max_seq_length', 'do_lower_case']
|
49 |
self.do_lower_case = do_lower_case
|
50 |
if model_args is None:
|
51 |
model_args = {}
|
|
|
60 |
self.jina_clip = AutoModel.from_pretrained(
|
61 |
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
|
62 |
)
|
63 |
+
if max_seq_length is not None and 'model_max_length' not in tokenizer_args:
|
64 |
+
tokenizer_args['model_max_length'] = max_seq_length
|
|
|
65 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
66 |
(
|
67 |
tokenizer_name_or_path
|
|
|
84 |
# No max_seq_length set. Try to infer from model
|
85 |
if max_seq_length is None:
|
86 |
if (
|
87 |
+
hasattr(self.jina_clip, 'config')
|
88 |
+
and hasattr(self.jina_clip.config, 'max_position_embeddings')
|
89 |
+
and hasattr(self.tokenizer, 'model_max_length')
|
90 |
):
|
91 |
max_seq_length = min(
|
92 |
self.jina_clip.config.max_position_embeddings,
|
|
|
98 |
if tokenizer_name_or_path is not None:
|
99 |
self.jina_clip.config.tokenizer_class = self.tokenizer.__class__.__name__
|
100 |
|
101 |
+
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
|
|
|
102 |
"""Returns token_embeddings, cls_token"""
|
103 |
+
if 'input_ids' in features:
|
104 |
embedding = self.jina_clip.get_text_features(
|
105 |
+
input_ids=features['input_ids']
|
106 |
)
|
107 |
else:
|
108 |
embedding = self.jina_clip.get_image_features(
|
109 |
+
pixel_values=features['pixel_values']
|
110 |
)
|
111 |
+
return {'sentence_embedding': embedding}
|
112 |
|
113 |
def get_word_embedding_dimension(self) -> int:
|
114 |
return self.config.text_config.embed_dim
|
115 |
|
116 |
+
@staticmethod
|
117 |
def decode_data_image(data_image_str):
|
118 |
header, data = data_image_str.split(',', 1)
|
119 |
image_data = base64.b64decode(data)
|
|
|
133 |
elif sample.startswith('data:image/'):
|
134 |
images.append(self.decode_data_image(sample).convert('RGB'))
|
135 |
else:
|
|
|
136 |
try:
|
137 |
images.append(Image.open(sample).convert('RGB'))
|
138 |
+
except Exception as e:
|
139 |
+
_ = str(e)
|
140 |
texts.append(sample)
|
141 |
elif isinstance(sample, Image.Image):
|
142 |
images.append(sample.convert('RGB'))
|
|
|
148 |
return self.tokenizer(
|
149 |
texts,
|
150 |
padding=padding,
|
151 |
+
truncation='longest_first',
|
152 |
+
return_tensors='pt',
|
153 |
max_length=self.max_seq_length,
|
154 |
)
|
155 |
elif images:
|
|
|
164 |
self.preprocessor.save_pretrained(output_path)
|
165 |
|
166 |
@staticmethod
|
167 |
+
def load(input_path: str) -> 'Transformer':
|
168 |
# Old classes used other config names than 'sentence_bert_config.json'
|
169 |
for config_name in [
|
170 |
+
'sentence_bert_config.json',
|
171 |
+
'sentence_roberta_config.json',
|
172 |
+
'sentence_distilbert_config.json',
|
173 |
+
'sentence_camembert_config.json',
|
174 |
+
'sentence_albert_config.json',
|
175 |
+
'sentence_xlm-roberta_config.json',
|
176 |
+
'sentence_xlnet_config.json',
|
177 |
]:
|
178 |
sbert_config_path = os.path.join(input_path, config_name)
|
179 |
if os.path.exists(sbert_config_path):
|
|
|
181 |
|
182 |
with open(sbert_config_path) as fIn:
|
183 |
config = json.load(fIn)
|
184 |
+
|
185 |
# Don't allow configs to set trust_remote_code
|
186 |
+
if 'model_args' in config and 'trust_remote_code' in config['model_args']:
|
187 |
+
config['model_args'].pop('trust_remote_code')
|
188 |
if (
|
189 |
+
'tokenizer_args' in config
|
190 |
+
and 'trust_remote_code' in config['tokenizer_args']
|
191 |
):
|
192 |
+
config['tokenizer_args'].pop('trust_remote_code')
|
193 |
+
if 'config_args' in config and 'trust_remote_code' in config['config_args']:
|
194 |
+
config['config_args'].pop('trust_remote_code')
|
195 |
+
|
196 |
+
return Transformer(model_name_or_path=input_path, **config)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a753294ed5d3d6dc4ae43f784824cdc3a6cbb7e8a815bff2ab200a3f411141a0
|
3 |
+
size 1729527426
|
modules.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
[
|
2 |
{
|
3 |
-
"idx":0,
|
4 |
-
"name":"0",
|
5 |
-
"path":"",
|
6 |
-
"type":"custom_st.Transformer"
|
7 |
},
|
8 |
{
|
9 |
-
"idx":2,
|
10 |
-
"name":"2",
|
11 |
-
"path":"2_Normalize",
|
12 |
-
"type":"sentence_transformers.models.Normalize"
|
13 |
}
|
14 |
]
|
|
|
1 |
[
|
2 |
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.Transformer"
|
7 |
},
|
8 |
{
|
9 |
+
"idx": 2,
|
10 |
+
"name": "2",
|
11 |
+
"path": "2_Normalize",
|
12 |
+
"type": "sentence_transformers.models.Normalize"
|
13 |
}
|
14 |
]
|
preprocessor_config.json
CHANGED
@@ -19,4 +19,4 @@
|
|
19 |
0.26130258,
|
20 |
0.27577711
|
21 |
]
|
22 |
-
}
|
|
|
19 |
0.26130258,
|
20 |
0.27577711
|
21 |
]
|
22 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dcfd3e9d325dd8a59bbce810b59be028f41fc5c6a478e4cc9b5ba0701f61004
|
3 |
+
size 1729735014
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6601c4120779a1a3863897ba332fe3481d548e363bec2c91eba10ef8640a5e93
|
3 |
+
size 17082997
|