HunyuanVideo-HFIE / handler.py
jbilcke-hf's picture
jbilcke-hf HF staff
Create handler.py
2df6ae7 verified
from dataclasses import dataclass
from typing import Dict, Any, Optional
import base64
import logging
import random
import torch
from diffusers import HunyuanVideoPipeline
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class GenerationConfig:
"""Configuration for video generation"""
# Content settings
prompt: str
negative_prompt: str = ""
# Model settings
num_frames: int = 49 # Should be 4k + 1 format
height: int = 320
width: int = 576
num_inference_steps: int = 50
guidance_scale: float = 7.0
# Reproducibility
seed: int = -1
# Varnish post-processing settings
fps: int = 30
double_num_frames: bool = False
super_resolution: bool = False
grain_amount: float = 0.0
quality: int = 18 # CRF scale (0-51, lower is better)
# Audio settings
enable_audio: bool = False
audio_prompt: str = ""
audio_negative_prompt: str = "voices, voice, talking, speaking, speech"
def validate_and_adjust(self) -> 'GenerationConfig':
"""Validate and adjust parameters"""
# Ensure num_frames follows 4k + 1 format
k = (self.num_frames - 1) // 4
self.num_frames = (k * 4) + 1
# Set random seed if not specified
if self.seed == -1:
self.seed = random.randint(0, 2**32 - 1)
return self
class EndpointHandler:
"""Handles video generation requests using HunyuanVideo and Varnish"""
def __init__(self, path: str = ""):
"""Initialize handler with models
Args:
path: Path to model weights
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize HunyuanVideo pipeline
self.pipeline = HunyuanVideoPipeline.from_pretrained(
path,
torch_dtype=torch.float16,
).to(self.device)
# Initialize text encoders in float16
self.pipeline.text_encoder = self.pipeline.text_encoder.half()
self.pipeline.text_encoder_2 = self.pipeline.text_encoder_2.half()
# Initialize transformer in bfloat16
self.pipeline.transformer = self.pipeline.transformer.to(torch.bfloat16)
# Initialize VAE in float16
self.pipeline.vae = self.pipeline.vae.half()
# Initialize Varnish for post-processing
self.varnish = Varnish(
device=self.device,
model_base_dir="/repository/varnish"
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process video generation requests
Args:
data: Request data containing:
- inputs (str): Prompt for video generation
- parameters (dict): Generation parameters
Returns:
Dictionary containing:
- video: Base64 encoded MP4 data URI
- content-type: MIME type
- metadata: Generation metadata
"""
# Extract inputs
inputs = data.pop("inputs", data)
if isinstance(inputs, dict):
prompt = inputs.get("prompt", "")
else:
prompt = inputs
params = data.get("parameters", {})
# Create and validate config
config = GenerationConfig(
prompt=prompt,
negative_prompt=params.get("negative_prompt", ""),
num_frames=params.get("num_frames", 49),
height=params.get("height", 320),
width=params.get("width", 576),
num_inference_steps=params.get("num_inference_steps", 50),
guidance_scale=params.get("guidance_scale", 7.0),
seed=params.get("seed", -1),
fps=params.get("fps", 30),
double_num_frames=params.get("double_num_frames", False),
super_resolution=params.get("super_resolution", False),
grain_amount=params.get("grain_amount", 0.0),
quality=params.get("quality", 18),
enable_audio=params.get("enable_audio", False),
audio_prompt=params.get("audio_prompt", ""),
audio_negative_prompt=params.get("audio_negative_prompt", "voices, voice, talking, speaking, speech"),
).validate_and_adjust()
try:
# Set random seeds
if config.seed != -1:
torch.manual_seed(config.seed)
random.seed(config.seed)
generator = torch.Generator(device=self.device).manual_seed(config.seed)
else:
generator = None
# Generate video frames
with torch.inference_mode():
output = self.pipeline(
prompt=config.prompt,
negative_prompt=config.negative_prompt,
num_frames=config.num_frames,
height=config.height,
width=config.width,
num_inference_steps=config.num_inference_steps,
guidance_scale=config.guidance_scale,
generator=generator,
output_type="pt",
).frames
# Process with Varnish
import asyncio
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(
self.varnish(
input_data=output,
fps=config.fps,
double_num_frames=config.double_num_frames,
super_resolution=config.super_resolution,
grain_amount=config.grain_amount,
enable_audio=config.enable_audio,
audio_prompt=config.audio_prompt,
audio_negative_prompt=config.audio_negative_prompt,
)
)
# Get video data URI
video_uri = loop.run_until_complete(
result.write(
type="data-uri",
quality=config.quality
)
)
return {
"video": video_uri,
"content-type": "video/mp4",
"metadata": {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration,
"seed": config.seed,
}
}
except Exception as e:
logger.error(f"Error generating video: {str(e)}")
raise RuntimeError(f"Failed to generate video: {str(e)}")