jbilcke-hf HF staff commited on
Commit
e3dcab5
·
verified ·
1 Parent(s): a54c820

Upload demo.py

Browse files
Files changed (1) hide show
  1. demo.py +104 -0
demo.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import InferenceClient
2
+ import base64
3
+ import os
4
+ from pathlib import Path
5
+ import time
6
+
7
+ def save_video(base64_video: str, output_path: str):
8
+ """Save base64 encoded video to a file"""
9
+ video_bytes = base64.b64decode(base64_video)
10
+ with open(output_path, "wb") as f:
11
+ f.write(video_bytes)
12
+
13
+ def generate_video(
14
+ prompt: str,
15
+ endpoint_url: str,
16
+ token: str = None,
17
+ resolution: str = "1280x720",
18
+ video_length: int = 129,
19
+ num_inference_steps: int = 50,
20
+ seed: int = -1,
21
+ guidance_scale: float = 1.0,
22
+ flow_shift: float = 7.0,
23
+ embedded_guidance_scale: float = 6.0
24
+ ) -> str:
25
+ """Generate a video using the custom inference endpoint.
26
+
27
+ Args:
28
+ prompt: Text prompt describing the video
29
+ endpoint_url: Full URL to the inference endpoint
30
+ token: HuggingFace API token for authentication
31
+ resolution: Video resolution (default: "1280x720")
32
+ video_length: Number of frames (default: 129 for 5s)
33
+ num_inference_steps: Number of inference steps (default: 50)
34
+ seed: Random seed, -1 for random (default: -1)
35
+ guidance_scale: Guidance scale value (default: 1.0)
36
+ flow_shift: Flow shift value (default: 7.0)
37
+ embedded_guidance_scale: Embedded guidance scale (default: 6.0)
38
+
39
+ Returns:
40
+ Path to the saved video file
41
+ """
42
+ # Initialize client
43
+ client = InferenceClient(model=endpoint_url, token=token)
44
+
45
+ # Prepare payload
46
+ payload = {
47
+ "inputs": prompt,
48
+ "resolution": resolution,
49
+ "video_length": video_length,
50
+ "num_inference_steps": num_inference_steps,
51
+ "seed": seed,
52
+ "guidance_scale": guidance_scale,
53
+ "flow_shift": flow_shift,
54
+ "embedded_guidance_scale": embedded_guidance_scale
55
+ }
56
+
57
+ # Make request
58
+ response = client.post(json=payload)
59
+ result = response.json()
60
+
61
+ # Save video
62
+ timestamp = int(time.time())
63
+ output_path = f"generated_video_{timestamp}.mp4"
64
+ save_video(result["video_base64"], output_path)
65
+
66
+ print(f"Video generated with seed {result['seed']}")
67
+ return output_path
68
+
69
+ if __name__ == "__main__":
70
+
71
+ hf_api_token = os.environ.get('HF_API_TOKEN', '')
72
+ endpoint_url = os.environ.get('ENDPOINT_URL', '')
73
+
74
+ video_path = generate_video(
75
+ endpoint_url=endpoint_url,
76
+ token=hf_api_token,
77
+
78
+ prompt="A cat walks on the grass, realistic style.",
79
+
80
+ # min resolution is 64x64, max is 4096x4096 (increment steps are by 16px)
81
+ # however the model is designed for 1280x720
82
+ resolution="1280x720",
83
+
84
+ # numbers of frames plus one (max 1024?)
85
+ # increments by 4 frames
86
+ video_length=49, # 129,
87
+
88
+ # number of denoising/sampling steps (default: 30)
89
+ num_inference_steps: int = 15, # 50,
90
+
91
+ seed: int = -1, # -1 to keep it random
92
+
93
+ # not sure why we have two guidance scales
94
+ guidance_scale = 1.0, # 3
95
+
96
+ # strength of prompt guidance (default: 6.0)
97
+ embedded_guidance_scale: float = 6.0
98
+
99
+
100
+ # video length (larger values result in shorter videos, default: 9.0, max: 30)
101
+ flow_shift: float = 9.0,
102
+
103
+ )
104
+ print(f"Video saved to: {video_path}")