File size: 2,160 Bytes
08547af 9bd5b03 08547af d859638 e69a6ee 3c15097 08547af 0b4cc63 e69a6ee 0b4cc63 08547af 0b4cc63 08547af 0975702 08547af 0b4cc63 08547af 7f301db 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 d859638 0b4cc63 7f301db 0b4cc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
license: cc-by-nc-nd-4.0
---
# ⚡ Flash Diffusion: FlashSDXL ⚡
Flash Diffusion is a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin.*
This model is a **108M** LoRA distilled version of [SDXL](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) model that is able to generate images in **4 steps**. The main purpose of this model is to reproduce the main results of the paper.
See our [live demo](https://huggingface.co./spaces/jasperai/FlashPixart).
<p align="center">
<img style="width:700px;" src="images/flash_sdxl.jpg">
</p>
# How to use?
The model can be used using the `DiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **4 steps**.
```python
from diffusers import DiffusionPipeline, LCMScheduler
adapter_id = "jasperai/flash-sdxl"
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
use_safetensors=True,
)
pipe.scheduler = LCMScheduler.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="scheduler",
timestep_spacing="trailing",
)
pipe.to("cuda")
# Fuse and load LoRA weights
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "A raccoon reading a book in a lush forest."
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
<p align="center">
<img style="width:400px;" src="images/raccoon.png">
</p>
# Training Details
The model was trained for 20k iterations on 4 H100 GPUs (representing approximately a total of 176 GPU hours of training). Please refer to the [paper](http://arxiv.org/abs/2406.02347) for further parameters details.
**Metrics on COCO 2014 validation (Table 3)**
- FID-10k: 21.62 (4 NFE)
- CLIP Score: 0.327 (4 NFE)
## License
This model is released under the the Creative Commons BY-NC license.
|