--- license: mit base_model: roberta-large tags: - generated_from_trainer datasets: - launch/open_question_type metrics: - f1 model-index: - name: roberta-large-question-classifier results: - task: name: Text Classification type: text-classification dataset: name: launch/open_question_type type: launch/open_question_type config: default split: validation args: default metrics: - name: F1 (macro avg.) type: f1 value: 0.8123190611646329 - task: name: Text Classification type: text-classification dataset: name: launch/open_question_type type: launch/open_question_type config: default split: test args: default metrics: - name: F1 (macro avg.) type: f1 value: 0.8 widget: - text: When two bacteria exchange genetic information, what is the process called? language: - en arxiv: 2107.00152 --- # roberta-large-question-classifier This model classifies questions according to the question-type ontology defined in following paper: [Controllable Open-ended Question Generation with A New Question Type Ontology](https://aclanthology.org/2021.acl-long.502/) (Cao & Wang, ACL-IJCNLP 2021). It is a fine-tuned [roberta-large](https://huggingface.co./roberta-large) on the [open_question_type](https://huggingface.co./datasets/launch/open_question_type) dataset. It achieves the following results on the test set: ``` precision recall f1-score support cause 0.91 0.93 0.92 91 comparison 0.62 0.83 0.71 30 concept 0.85 0.65 0.74 54 consequence 0.80 0.73 0.76 11 disjunction 0.80 0.78 0.79 36 example 0.83 0.85 0.84 139 extent 0.82 0.94 0.87 48 judgmental 0.68 0.56 0.62 94 procedural 0.86 0.88 0.87 85 verification 0.79 0.86 0.83 72 accuracy 0.81 660 macro avg 0.80 0.80 0.80 660 weighted avg 0.81 0.81 0.81 660 ``` ## Training procedure Script: https://gist.github.com/jantrienes/329479bdad6b2a239cfcea83b9159a8a ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9467 | 1.0 | 233 | 1.3099 | 0.4050 | | 0.6381 | 2.0 | 466 | 0.5586 | 0.7785 | | 0.628 | 3.0 | 699 | 0.6419 | 0.7831 | | 0.4487 | 4.0 | 932 | 0.5770 | 0.8094 | | 0.3319 | 5.0 | 1165 | 0.7713 | 0.7953 | | 0.2095 | 6.0 | 1398 | 0.8799 | 0.8018 | | 0.1355 | 7.0 | 1631 | 1.0646 | 0.7961 | | 0.0956 | 8.0 | 1864 | 1.2175 | 0.7999 | | 0.0687 | 9.0 | 2097 | 1.3647 | 0.7892 | | 0.0371 | 10.0 | 2330 | 1.3809 | 0.7987 | | 0.0303 | 11.0 | 2563 | 1.3591 | 0.8123 | | 0.0263 | 12.0 | 2796 | 1.5317 | 0.8100 | | 0.0144 | 13.0 | 3029 | 1.5726 | 0.7959 | | 0.0436 | 14.0 | 3262 | 1.6160 | 0.7988 | | 0.0048 | 15.0 | 3495 | 1.6826 | 0.7957 | | 0.0001 | 16.0 | 3728 | 1.6913 | 0.7957 | | 0.0001 | 17.0 | 3961 | 1.7076 | 0.7995 | | 0.0034 | 18.0 | 4194 | 1.8018 | 0.7960 | | 0.0228 | 19.0 | 4427 | 1.7457 | 0.7916 | | 0.0083 | 20.0 | 4660 | 1.9279 | 0.7869 | | 0.0001 | 21.0 | 4893 | 1.8367 | 0.7915 | | 0.0003 | 22.0 | 5126 | 1.8620 | 0.7842 | | 0.0002 | 23.0 | 5359 | 1.9192 | 0.7828 | | 0.0 | 24.0 | 5592 | 1.9081 | 0.7927 | | 0.0003 | 25.0 | 5825 | 1.9822 | 0.7813 | | 0.0059 | 26.0 | 6058 | 1.8737 | 0.7954 | | 0.0 | 27.0 | 6291 | 1.8793 | 0.7929 | | 0.0 | 28.0 | 6524 | 1.8905 | 0.7940 | | 0.0 | 29.0 | 6757 | 1.8971 | 0.7940 | | 0.0002 | 30.0 | 6990 | 1.9002 | 0.7954 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3