jadechoghari
commited on
Update diffloss.py
Browse files- diffloss.py +5 -20
diffloss.py
CHANGED
@@ -5,7 +5,6 @@ import math
|
|
5 |
|
6 |
from .diffusion import create_diffusion
|
7 |
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
class DiffLoss(nn.Module):
|
11 |
"""Diffusion Loss"""
|
@@ -36,12 +35,12 @@ class DiffLoss(nn.Module):
|
|
36 |
def sample(self, z, temperature=1.0, cfg=1.0):
|
37 |
# diffusion loss sampling
|
38 |
if not cfg == 1.0:
|
39 |
-
noise = torch.randn(z.shape[0] // 2, self.in_channels).
|
40 |
noise = torch.cat([noise, noise], dim=0)
|
41 |
model_kwargs = dict(c=z, cfg_scale=cfg)
|
42 |
sample_fn = self.net.forward_with_cfg
|
43 |
else:
|
44 |
-
noise = torch.randn(z.shape[0], self.in_channels).
|
45 |
model_kwargs = dict(c=z)
|
46 |
sample_fn = self.net.forward
|
47 |
|
@@ -91,23 +90,9 @@ class TimestepEmbedder(nn.Module):
|
|
91 |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
92 |
return embedding
|
93 |
|
94 |
-
# def forward(self, t):
|
95 |
-
# t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
96 |
-
# t_emb = self.mlp(t_freq)
|
97 |
-
# return t_emb
|
98 |
def forward(self, t):
|
99 |
-
|
100 |
-
device = next(self.mlp.parameters()).device
|
101 |
-
|
102 |
-
t = t.to(device)
|
103 |
-
|
104 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
105 |
-
|
106 |
-
t_freq = t_freq.to(device)
|
107 |
-
|
108 |
t_emb = self.mlp(t_freq)
|
109 |
-
|
110 |
-
|
111 |
return t_emb
|
112 |
|
113 |
|
@@ -145,7 +130,7 @@ class ResBlock(nn.Module):
|
|
145 |
|
146 |
class FinalLayer(nn.Module):
|
147 |
"""
|
148 |
-
The final layer
|
149 |
"""
|
150 |
def __init__(self, model_channels, out_channels):
|
151 |
super().__init__()
|
@@ -232,10 +217,10 @@ class SimpleMLPAdaLN(nn.Module):
|
|
232 |
def forward(self, x, t, c):
|
233 |
"""
|
234 |
Apply the model to an input batch.
|
235 |
-
:param x: an [N x C
|
236 |
:param t: a 1-D batch of timesteps.
|
237 |
:param c: conditioning from AR transformer.
|
238 |
-
:return: an [N x C
|
239 |
"""
|
240 |
x = self.input_proj(x)
|
241 |
t = self.time_embed(t)
|
|
|
5 |
|
6 |
from .diffusion import create_diffusion
|
7 |
|
|
|
8 |
|
9 |
class DiffLoss(nn.Module):
|
10 |
"""Diffusion Loss"""
|
|
|
35 |
def sample(self, z, temperature=1.0, cfg=1.0):
|
36 |
# diffusion loss sampling
|
37 |
if not cfg == 1.0:
|
38 |
+
noise = torch.randn(z.shape[0] // 2, self.in_channels).cuda()
|
39 |
noise = torch.cat([noise, noise], dim=0)
|
40 |
model_kwargs = dict(c=z, cfg_scale=cfg)
|
41 |
sample_fn = self.net.forward_with_cfg
|
42 |
else:
|
43 |
+
noise = torch.randn(z.shape[0], self.in_channels).cuda()
|
44 |
model_kwargs = dict(c=z)
|
45 |
sample_fn = self.net.forward
|
46 |
|
|
|
90 |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
91 |
return embedding
|
92 |
|
|
|
|
|
|
|
|
|
93 |
def forward(self, t):
|
|
|
|
|
|
|
|
|
|
|
94 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
|
|
|
|
|
95 |
t_emb = self.mlp(t_freq)
|
|
|
|
|
96 |
return t_emb
|
97 |
|
98 |
|
|
|
130 |
|
131 |
class FinalLayer(nn.Module):
|
132 |
"""
|
133 |
+
The final layer adopted from DiT.
|
134 |
"""
|
135 |
def __init__(self, model_channels, out_channels):
|
136 |
super().__init__()
|
|
|
217 |
def forward(self, x, t, c):
|
218 |
"""
|
219 |
Apply the model to an input batch.
|
220 |
+
:param x: an [N x C] Tensor of inputs.
|
221 |
:param t: a 1-D batch of timesteps.
|
222 |
:param c: conditioning from AR transformer.
|
223 |
+
:return: an [N x C] Tensor of outputs.
|
224 |
"""
|
225 |
x = self.input_proj(x)
|
226 |
t = self.time_embed(t)
|