Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -69.89 +/- 95.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f323bf98790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f323bf98820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f323bf988b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f323bf98940>", "_build": "<function ActorCriticPolicy._build at 0x7f323bf989d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f323bf98a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f323bf98af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f323bf98b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f323bf98c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f323bf98ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f323bf98d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f323bf98dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f323bf95510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677142367615676924, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALaYXL4PHsI/GYImv77Tyr053xA+pQ+UPAAAAAAAAAAAc+GQvS1Suz+fsiC/wHQaPq61YT1lko48AAAAAAAAAADAcYy9UV44P3BN9r2mFma/rWnkvAnLQb0AAAAAAAAAAGYv2zy8Gow/DoKzPU7mVr83pjE9ogn7PQAAAAAAAAAAWhsHPkgjnT/NvEg/FJQXvxQRhb21UTa9AAAAAAAAAACjgKc+CGLiPlbZDz9RnJK/X2mqPopIgz4AAAAAAAAAAEa/yb4iM/A+GC5jvgX0ib8dHvO++/4lvgAAAAAAAAAA5hKjPf06tz/XoDs+bGOKvjkdR72sTMQ9AAAAAAAAAACINgq/mhu6PjBoW79Fuoe/MVSgPUFUjr4AAAAAAAAAAEBm7j7E0Mw9UEPHPp5ujr+Ikmg++oC/PQAAAAAAAAAAQMLMvcG/2j6ySii+vJOIv3zJMT4iAVM9AAAAAAAAAABaVh2+uqpOP7+bsb4MhFS/EjnzvYbv9L0AAAAAAAAAACAyYT6wr6Q/NxQWP+7FuL7Ar8q92Y2+PQAAAAAAAAAATfdWva50uz/FgQG/ZVP/PVYzED3IBPO8AAAAAAAAAABmkZU9pe22PnrxmTvgh6C/Be8sPo8pPz4AAAAAAAAAALo20D54rK49m19SPsWDs7/dWNQ9Ug+xPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISIjyBS3kNMCUhpRSlIwBbJRLTYwBdJRHQGdSKTr3TNN1fZQoaAZoCWgPQwiaQBGLGBFcwJSGlFKUaBVLfGgWR0BnUsiB5HEudX2UKGgGaAloD0MIIZBLHHlySMCUhpRSlGgVS4BoFkdAZ1M6WgOBlXV9lChoBmgJaA9DCJUO1v+5xnHAlIaUUpRoFUtwaBZHQGdTqgIyCWh1fZQoaAZoCWgPQwiELuHQW81dwJSGlFKUaBVLZmgWR0BnVOe8PFvRdX2UKGgGaAloD0MI7niT36LWccCUhpRSlGgVS3poFkdAZ1Yu7HyVfXV9lChoBmgJaA9DCOWzPA/ulFXAlIaUUpRoFUtraBZHQGdWpPRArx11fZQoaAZoCWgPQwjBN02fHdtawJSGlFKUaBVLY2gWR0BnVt4Pf8/EdX2UKGgGaAloD0MIF0hQ/BhZQsCUhpRSlGgVS1BoFkdAZ1iItUXHinV9lChoBmgJaA9DCAaeew+XG1XAlIaUUpRoFUtmaBZHQGdYsKsuFpR1fZQoaAZoCWgPQwiga19ALyNRwJSGlFKUaBVLT2gWR0BnWKqbSZ0CdX2UKGgGaAloD0MIr7FLVG89KUCUhpRSlGgVS4ZoFkdAZ1k0Re1KG3V9lChoBmgJaA9DCIxmZfsQpW7AlIaUUpRoFUttaBZHQGdcWlMyrPt1fZQoaAZoCWgPQwiFzmvsknhhwJSGlFKUaBVLT2gWR0BnXJDVpbljdX2UKGgGaAloD0MI41RrYRbAYMCUhpRSlGgVS05oFkdAZ1zOZb6gunV9lChoBmgJaA9DCJRrCmR2CEvAlIaUUpRoFUtWaBZHQGdc6lchTwV1fZQoaAZoCWgPQwjfiy/aY9FlwJSGlFKUaBVLZmgWR0BnXby6MBIXdX2UKGgGaAloD0MIEOoihbIMUMCUhpRSlGgVS31oFkdAZ16fK6nR9nV9lChoBmgJaA9DCDBHj9/bSGDAlIaUUpRoFUtwaBZHQGdfjFqBVdZ1fZQoaAZoCWgPQwigUiXK3rBKwJSGlFKUaBVLUWgWR0BnYOn62v0RdX2UKGgGaAloD0MIqvHSTWK4VMCUhpRSlGgVS1JoFkdAZ2FF6Rhc7nV9lChoBmgJaA9DCJShKqbSXVDAlIaUUpRoFUtCaBZHQGdhMNc4YJp1fZQoaAZoCWgPQwgTmbnA5WEnwJSGlFKUaBVLcWgWR0BnYxMxoIv8dX2UKGgGaAloD0MIcqPIWkPfU8CUhpRSlGgVS1RoFkdAZ2PS/j81oHV9lChoBmgJaA9DCNhF0QMff1vAlIaUUpRoFUt1aBZHQGdk3IdU83d1fZQoaAZoCWgPQwj0xd6LL7tYwJSGlFKUaBVLPmgWR0BnZL9XLeQ/dX2UKGgGaAloD0MISnoYWp1yRcCUhpRSlGgVS4loFkdAZ2TW2gFotnV9lChoBmgJaA9DCEcBomDGIlPAlIaUUpRoFUtAaBZHQGdl1XeWOZN1fZQoaAZoCWgPQwix3NJqSKBKwJSGlFKUaBVLRWgWR0BnZaw8nuzAdX2UKGgGaAloD0MIS5F8JZDSUsCUhpRSlGgVS05oFkdAZ2ZOxjawlnV9lChoBmgJaA9DCOfHX1rUIl7AlIaUUpRoFUtwaBZHQGdmrQXyiEh1fZQoaAZoCWgPQwjOb5hokItbwJSGlFKUaBVLcGgWR0BnZsSXdCVsdX2UKGgGaAloD0MIiLmkarsdXsCUhpRSlGgVS05oFkdAZ2rsyi22HHV9lChoBmgJaA9DCL9GkiBcEFjAlIaUUpRoFUuAaBZHQGds5f2K2rp1fZQoaAZoCWgPQwgCZr6Dn/JYwJSGlFKUaBVLXmgWR0BnbP6Mzdk8dX2UKGgGaAloD0MIGTc10HwGT8CUhpRSlGgVS0loFkdAZ24Y7aIvanV9lChoBmgJaA9DCC4B+KdUuWDAlIaUUpRoFUt9aBZHQGdukYO2AoZ1fZQoaAZoCWgPQwiMFTWYhnlYwJSGlFKUaBVLfGgWR0Bnb3kBCD28dX2UKGgGaAloD0MIkncOZagOSMCUhpRSlGgVS0poFkdAZ3BOxjawlnV9lChoBmgJaA9DCJAxdy0hNzRAlIaUUpRoFUuCaBZHQGdxY/FBIFx1fZQoaAZoCWgPQwgKnkKuVEljwJSGlFKUaBVLX2gWR0Bncp1cMVk+dX2UKGgGaAloD0MIKlWi7C1UV8CUhpRSlGgVS25oFkdAZ3L0eU6gd3V9lChoBmgJaA9DCHnMQGX82UvAlIaUUpRoFUt7aBZHQGdy9SEUTL51fZQoaAZoCWgPQwhlGeJYF/FWwJSGlFKUaBVLd2gWR0Bnc0Djin50dX2UKGgGaAloD0MIf4RhwJJdX8CUhpRSlGgVS3BoFkdAZ3RhOxjawnV9lChoBmgJaA9DCJJdaRmpPmXAlIaUUpRoFUuAaBZHQGd1ZTho/Rp1fZQoaAZoCWgPQwjo+GhxxjRMwJSGlFKUaBVLT2gWR0BndVhoduHfdX2UKGgGaAloD0MIiZenc0XFTsCUhpRSlGgVS0ZoFkdAZ3YZF5OafHV9lChoBmgJaA9DCG06ArhZS1HAlIaUUpRoFUtDaBZHQGd3NZNfw7V1fZQoaAZoCWgPQwgEcR5OYEhmwJSGlFKUaBVLgGgWR0Bndyqfe1rqdX2UKGgGaAloD0MIVkYjn9cYYMCUhpRSlGgVS4loFkdAZ3dIz3yqdnV9lChoBmgJaA9DCLcos0EmTl/AlIaUUpRoFUtXaBZHQGd6WW6bvw51fZQoaAZoCWgPQwg66X3ja+FgwJSGlFKUaBVLaGgWR0Bnez4pMHrydX2UKGgGaAloD0MILzGW6ZcwOUCUhpRSlGgVS0RoFkdAZ3y/eLvTgHV9lChoBmgJaA9DCFryeFp+yVTAlIaUUpRoFUtaaBZHQGd+DR+jM3Z1fZQoaAZoCWgPQwiHbCBdbHduwJSGlFKUaBVLV2gWR0BnfgXKr7wbdX2UKGgGaAloD0MIR6rv/KILbMCUhpRSlGgVS2poFkdAZ38R/3Fkx3V9lChoBmgJaA9DCL3IBPwa23LAlIaUUpRoFUuOaBZHQGd/RVp9JBh1fZQoaAZoCWgPQwiV8loJnflwwJSGlFKUaBVLfmgWR0BngK/20zCUdX2UKGgGaAloD0MIaD9SRIbHXcCUhpRSlGgVS3FoFkdAZ4Gu0TlDGHV9lChoBmgJaA9DCJOLMbCOf1vAlIaUUpRoFUtzaBZHQGeCOqvNeMR1fZQoaAZoCWgPQwjOUNzxptBiwJSGlFKUaBVLVmgWR0BngrYAbQ1KdX2UKGgGaAloD0MIda4oJQRDYcCUhpRSlGgVS2hoFkdAZ4MOWBz3iHV9lChoBmgJaA9DCNfep6rQ5lbAlIaUUpRoFUtYaBZHQGeDESM98qp1fZQoaAZoCWgPQwgyIeaSqlxYwJSGlFKUaBVLbGgWR0Bng6Gzru6VdX2UKGgGaAloD0MIF2cMc4JqW8CUhpRSlGgVS2FoFkdAZ4QDGLk0anV9lChoBmgJaA9DCOCik6XWn17AlIaUUpRoFUuBaBZHQGeGsqSX+l11fZQoaAZoCWgPQwi5bd+j/p9ewJSGlFKUaBVLV2gWR0BnhtNSIgvEdX2UKGgGaAloD0MINwAbECFGXsCUhpRSlGgVS1RoFkdAZ4kbH6uW8nV9lChoBmgJaA9DCEJD/wSX9WXAlIaUUpRoFUtNaBZHQGeJaT4cm0F1fZQoaAZoCWgPQwjb3m5JDuZLwJSGlFKUaBVLcWgWR0BniYTfzjFRdX2UKGgGaAloD0MIM4rlllYhUsCUhpRSlGgVS1toFkdAZ4sI3R5TqHV9lChoBmgJaA9DCE0SS8rdNy3AlIaUUpRoFUtmaBZHQGeLgUtZmqZ1fZQoaAZoCWgPQwggf2lRn6hJwJSGlFKUaBVLcmgWR0Bni/7WNFSbdX2UKGgGaAloD0MI7PgvEARTUsCUhpRSlGgVS1FoFkdAZ412ovSMLnV9lChoBmgJaA9DCK2nVl9dNljAlIaUUpRoFUteaBZHQGeN8biqABl1fZQoaAZoCWgPQwh+qDRiZixSwJSGlFKUaBVLUmgWR0BnjryWiUPhdX2UKGgGaAloD0MIeA5lqIp8UMCUhpRSlGgVSz1oFkdAZ48LE1l5GHV9lChoBmgJaA9DCO8gdqZQKmXAlIaUUpRoFUtlaBZHQGeQM1baAWl1fZQoaAZoCWgPQwgfotEdxGZhwJSGlFKUaBVLeWgWR0BnkLhNucc3dX2UKGgGaAloD0MIiC6ob5lPYsCUhpRSlGgVS3FoFkdAZ5GDmr8zh3V9lChoBmgJaA9DCEc4LXjR+FXAlIaUUpRoFUttaBZHQGeR60Y0l7d1fZQoaAZoCWgPQwgiwyreiMJzwJSGlFKUaBVLe2gWR0BnkmiL2pQ2dX2UKGgGaAloD0MI8DLDRlmVXsCUhpRSlGgVS1toFkdAZ5NMkhRqGnV9lChoBmgJaA9DCHOiXYWUM0LAlIaUUpRoFUtRaBZHQGeUXa8Hv+h1fZQoaAZoCWgPQwhSuYlamp9TwJSGlFKUaBVLRmgWR0BnlQnlXA/LdX2UKGgGaAloD0MIsdzSakjNYMCUhpRSlGgVS1poFkdAZ5Wkdmxt53V9lChoBmgJaA9DCJ56pMFtUHTAlIaUUpRoFUtraBZHQGeXYrJ8v251fZQoaAZoCWgPQwg89N2tLFNWwJSGlFKUaBVLTGgWR0Bnl/3rUsnRdX2UKGgGaAloD0MI8wGBzqSJW8CUhpRSlGgVS1VoFkdAZ5iwRoRIz3V9lChoBmgJaA9DCNehmpIsKGDAlIaUUpRoFUtQaBZHQGeaxSP2f051fZQoaAZoCWgPQwi6pGq7ie1pwJSGlFKUaBVLe2gWR0Bnm4RXfZVXdX2UKGgGaAloD0MIwM+4cCBGUcCUhpRSlGgVS05oFkdAZ5veANG3F3V9lChoBmgJaA9DCHnnUIaqbVbAlIaUUpRoFUtgaBZHQGeb13dKujh1fZQoaAZoCWgPQwjk3CbcK/towJSGlFKUaBVLZmgWR0BnnGeFtbcHdX2UKGgGaAloD0MIHxMpzeYBMsCUhpRSlGgVS1JoFkdAZ5zfpD/lyXV9lChoBmgJaA9DCFch5SdVhmPAlIaUUpRoFUtaaBZHQGefejmCAc11fZQoaAZoCWgPQwhI+Um1T9tKwJSGlFKUaBVLTGgWR0BnoMtNBWxRdX2UKGgGaAloD0MI7+cU5GfvUsCUhpRSlGgVS5VoFkdAZ6I4o7V8TnV9lChoBmgJaA9DCNvBiH0CeFnAlIaUUpRoFUtgaBZHQGeiYBeXzDp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:951461f2b8671d2d759f3b47829ee915d999d8687cc288e443f4d9460bc2e0ac
|
3 |
+
size 147285
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f323bf98790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f323bf98820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f323bf988b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f323bf98940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f323bf989d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f323bf98a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f323bf98af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f323bf98b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f323bf98c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f323bf98ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f323bf98d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f323bf98dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f323bf95510>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 65536,
|
47 |
+
"_total_timesteps": 50000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677142367615676924,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALaYXL4PHsI/GYImv77Tyr053xA+pQ+UPAAAAAAAAAAAc+GQvS1Suz+fsiC/wHQaPq61YT1lko48AAAAAAAAAADAcYy9UV44P3BN9r2mFma/rWnkvAnLQb0AAAAAAAAAAGYv2zy8Gow/DoKzPU7mVr83pjE9ogn7PQAAAAAAAAAAWhsHPkgjnT/NvEg/FJQXvxQRhb21UTa9AAAAAAAAAACjgKc+CGLiPlbZDz9RnJK/X2mqPopIgz4AAAAAAAAAAEa/yb4iM/A+GC5jvgX0ib8dHvO++/4lvgAAAAAAAAAA5hKjPf06tz/XoDs+bGOKvjkdR72sTMQ9AAAAAAAAAACINgq/mhu6PjBoW79Fuoe/MVSgPUFUjr4AAAAAAAAAAEBm7j7E0Mw9UEPHPp5ujr+Ikmg++oC/PQAAAAAAAAAAQMLMvcG/2j6ySii+vJOIv3zJMT4iAVM9AAAAAAAAAABaVh2+uqpOP7+bsb4MhFS/EjnzvYbv9L0AAAAAAAAAACAyYT6wr6Q/NxQWP+7FuL7Ar8q92Y2+PQAAAAAAAAAATfdWva50uz/FgQG/ZVP/PVYzED3IBPO8AAAAAAAAAABmkZU9pe22PnrxmTvgh6C/Be8sPo8pPz4AAAAAAAAAALo20D54rK49m19SPsWDs7/dWNQ9Ug+xPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.3107200000000001,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISIjyBS3kNMCUhpRSlIwBbJRLTYwBdJRHQGdSKTr3TNN1fZQoaAZoCWgPQwiaQBGLGBFcwJSGlFKUaBVLfGgWR0BnUsiB5HEudX2UKGgGaAloD0MIIZBLHHlySMCUhpRSlGgVS4BoFkdAZ1M6WgOBlXV9lChoBmgJaA9DCJUO1v+5xnHAlIaUUpRoFUtwaBZHQGdTqgIyCWh1fZQoaAZoCWgPQwiELuHQW81dwJSGlFKUaBVLZmgWR0BnVOe8PFvRdX2UKGgGaAloD0MI7niT36LWccCUhpRSlGgVS3poFkdAZ1Yu7HyVfXV9lChoBmgJaA9DCOWzPA/ulFXAlIaUUpRoFUtraBZHQGdWpPRArx11fZQoaAZoCWgPQwjBN02fHdtawJSGlFKUaBVLY2gWR0BnVt4Pf8/EdX2UKGgGaAloD0MIF0hQ/BhZQsCUhpRSlGgVS1BoFkdAZ1iItUXHinV9lChoBmgJaA9DCAaeew+XG1XAlIaUUpRoFUtmaBZHQGdYsKsuFpR1fZQoaAZoCWgPQwiga19ALyNRwJSGlFKUaBVLT2gWR0BnWKqbSZ0CdX2UKGgGaAloD0MIr7FLVG89KUCUhpRSlGgVS4ZoFkdAZ1k0Re1KG3V9lChoBmgJaA9DCIxmZfsQpW7AlIaUUpRoFUttaBZHQGdcWlMyrPt1fZQoaAZoCWgPQwiFzmvsknhhwJSGlFKUaBVLT2gWR0BnXJDVpbljdX2UKGgGaAloD0MI41RrYRbAYMCUhpRSlGgVS05oFkdAZ1zOZb6gunV9lChoBmgJaA9DCJRrCmR2CEvAlIaUUpRoFUtWaBZHQGdc6lchTwV1fZQoaAZoCWgPQwjfiy/aY9FlwJSGlFKUaBVLZmgWR0BnXby6MBIXdX2UKGgGaAloD0MIEOoihbIMUMCUhpRSlGgVS31oFkdAZ16fK6nR9nV9lChoBmgJaA9DCDBHj9/bSGDAlIaUUpRoFUtwaBZHQGdfjFqBVdZ1fZQoaAZoCWgPQwigUiXK3rBKwJSGlFKUaBVLUWgWR0BnYOn62v0RdX2UKGgGaAloD0MIqvHSTWK4VMCUhpRSlGgVS1JoFkdAZ2FF6Rhc7nV9lChoBmgJaA9DCJShKqbSXVDAlIaUUpRoFUtCaBZHQGdhMNc4YJp1fZQoaAZoCWgPQwgTmbnA5WEnwJSGlFKUaBVLcWgWR0BnYxMxoIv8dX2UKGgGaAloD0MIcqPIWkPfU8CUhpRSlGgVS1RoFkdAZ2PS/j81oHV9lChoBmgJaA9DCNhF0QMff1vAlIaUUpRoFUt1aBZHQGdk3IdU83d1fZQoaAZoCWgPQwj0xd6LL7tYwJSGlFKUaBVLPmgWR0BnZL9XLeQ/dX2UKGgGaAloD0MISnoYWp1yRcCUhpRSlGgVS4loFkdAZ2TW2gFotnV9lChoBmgJaA9DCEcBomDGIlPAlIaUUpRoFUtAaBZHQGdl1XeWOZN1fZQoaAZoCWgPQwix3NJqSKBKwJSGlFKUaBVLRWgWR0BnZaw8nuzAdX2UKGgGaAloD0MIS5F8JZDSUsCUhpRSlGgVS05oFkdAZ2ZOxjawlnV9lChoBmgJaA9DCOfHX1rUIl7AlIaUUpRoFUtwaBZHQGdmrQXyiEh1fZQoaAZoCWgPQwjOb5hokItbwJSGlFKUaBVLcGgWR0BnZsSXdCVsdX2UKGgGaAloD0MIiLmkarsdXsCUhpRSlGgVS05oFkdAZ2rsyi22HHV9lChoBmgJaA9DCL9GkiBcEFjAlIaUUpRoFUuAaBZHQGds5f2K2rp1fZQoaAZoCWgPQwgCZr6Dn/JYwJSGlFKUaBVLXmgWR0BnbP6Mzdk8dX2UKGgGaAloD0MIGTc10HwGT8CUhpRSlGgVS0loFkdAZ24Y7aIvanV9lChoBmgJaA9DCC4B+KdUuWDAlIaUUpRoFUt9aBZHQGdukYO2AoZ1fZQoaAZoCWgPQwiMFTWYhnlYwJSGlFKUaBVLfGgWR0Bnb3kBCD28dX2UKGgGaAloD0MIkncOZagOSMCUhpRSlGgVS0poFkdAZ3BOxjawlnV9lChoBmgJaA9DCJAxdy0hNzRAlIaUUpRoFUuCaBZHQGdxY/FBIFx1fZQoaAZoCWgPQwgKnkKuVEljwJSGlFKUaBVLX2gWR0Bncp1cMVk+dX2UKGgGaAloD0MIKlWi7C1UV8CUhpRSlGgVS25oFkdAZ3L0eU6gd3V9lChoBmgJaA9DCHnMQGX82UvAlIaUUpRoFUt7aBZHQGdy9SEUTL51fZQoaAZoCWgPQwhlGeJYF/FWwJSGlFKUaBVLd2gWR0Bnc0Djin50dX2UKGgGaAloD0MIf4RhwJJdX8CUhpRSlGgVS3BoFkdAZ3RhOxjawnV9lChoBmgJaA9DCJJdaRmpPmXAlIaUUpRoFUuAaBZHQGd1ZTho/Rp1fZQoaAZoCWgPQwjo+GhxxjRMwJSGlFKUaBVLT2gWR0BndVhoduHfdX2UKGgGaAloD0MIiZenc0XFTsCUhpRSlGgVS0ZoFkdAZ3YZF5OafHV9lChoBmgJaA9DCG06ArhZS1HAlIaUUpRoFUtDaBZHQGd3NZNfw7V1fZQoaAZoCWgPQwgEcR5OYEhmwJSGlFKUaBVLgGgWR0Bndyqfe1rqdX2UKGgGaAloD0MIVkYjn9cYYMCUhpRSlGgVS4loFkdAZ3dIz3yqdnV9lChoBmgJaA9DCLcos0EmTl/AlIaUUpRoFUtXaBZHQGd6WW6bvw51fZQoaAZoCWgPQwg66X3ja+FgwJSGlFKUaBVLaGgWR0Bnez4pMHrydX2UKGgGaAloD0MILzGW6ZcwOUCUhpRSlGgVS0RoFkdAZ3y/eLvTgHV9lChoBmgJaA9DCFryeFp+yVTAlIaUUpRoFUtaaBZHQGd+DR+jM3Z1fZQoaAZoCWgPQwiHbCBdbHduwJSGlFKUaBVLV2gWR0BnfgXKr7wbdX2UKGgGaAloD0MIR6rv/KILbMCUhpRSlGgVS2poFkdAZ38R/3Fkx3V9lChoBmgJaA9DCL3IBPwa23LAlIaUUpRoFUuOaBZHQGd/RVp9JBh1fZQoaAZoCWgPQwiV8loJnflwwJSGlFKUaBVLfmgWR0BngK/20zCUdX2UKGgGaAloD0MIaD9SRIbHXcCUhpRSlGgVS3FoFkdAZ4Gu0TlDGHV9lChoBmgJaA9DCJOLMbCOf1vAlIaUUpRoFUtzaBZHQGeCOqvNeMR1fZQoaAZoCWgPQwjOUNzxptBiwJSGlFKUaBVLVmgWR0BngrYAbQ1KdX2UKGgGaAloD0MIda4oJQRDYcCUhpRSlGgVS2hoFkdAZ4MOWBz3iHV9lChoBmgJaA9DCNfep6rQ5lbAlIaUUpRoFUtYaBZHQGeDESM98qp1fZQoaAZoCWgPQwgyIeaSqlxYwJSGlFKUaBVLbGgWR0Bng6Gzru6VdX2UKGgGaAloD0MIF2cMc4JqW8CUhpRSlGgVS2FoFkdAZ4QDGLk0anV9lChoBmgJaA9DCOCik6XWn17AlIaUUpRoFUuBaBZHQGeGsqSX+l11fZQoaAZoCWgPQwi5bd+j/p9ewJSGlFKUaBVLV2gWR0BnhtNSIgvEdX2UKGgGaAloD0MINwAbECFGXsCUhpRSlGgVS1RoFkdAZ4kbH6uW8nV9lChoBmgJaA9DCEJD/wSX9WXAlIaUUpRoFUtNaBZHQGeJaT4cm0F1fZQoaAZoCWgPQwjb3m5JDuZLwJSGlFKUaBVLcWgWR0BniYTfzjFRdX2UKGgGaAloD0MIM4rlllYhUsCUhpRSlGgVS1toFkdAZ4sI3R5TqHV9lChoBmgJaA9DCE0SS8rdNy3AlIaUUpRoFUtmaBZHQGeLgUtZmqZ1fZQoaAZoCWgPQwggf2lRn6hJwJSGlFKUaBVLcmgWR0Bni/7WNFSbdX2UKGgGaAloD0MI7PgvEARTUsCUhpRSlGgVS1FoFkdAZ412ovSMLnV9lChoBmgJaA9DCK2nVl9dNljAlIaUUpRoFUteaBZHQGeN8biqABl1fZQoaAZoCWgPQwh+qDRiZixSwJSGlFKUaBVLUmgWR0BnjryWiUPhdX2UKGgGaAloD0MIeA5lqIp8UMCUhpRSlGgVSz1oFkdAZ48LE1l5GHV9lChoBmgJaA9DCO8gdqZQKmXAlIaUUpRoFUtlaBZHQGeQM1baAWl1fZQoaAZoCWgPQwgfotEdxGZhwJSGlFKUaBVLeWgWR0BnkLhNucc3dX2UKGgGaAloD0MIiC6ob5lPYsCUhpRSlGgVS3FoFkdAZ5GDmr8zh3V9lChoBmgJaA9DCEc4LXjR+FXAlIaUUpRoFUttaBZHQGeR60Y0l7d1fZQoaAZoCWgPQwgiwyreiMJzwJSGlFKUaBVLe2gWR0BnkmiL2pQ2dX2UKGgGaAloD0MI8DLDRlmVXsCUhpRSlGgVS1toFkdAZ5NMkhRqGnV9lChoBmgJaA9DCHOiXYWUM0LAlIaUUpRoFUtRaBZHQGeUXa8Hv+h1fZQoaAZoCWgPQwhSuYlamp9TwJSGlFKUaBVLRmgWR0BnlQnlXA/LdX2UKGgGaAloD0MIsdzSakjNYMCUhpRSlGgVS1poFkdAZ5Wkdmxt53V9lChoBmgJaA9DCJ56pMFtUHTAlIaUUpRoFUtraBZHQGeXYrJ8v251fZQoaAZoCWgPQwg89N2tLFNWwJSGlFKUaBVLTGgWR0Bnl/3rUsnRdX2UKGgGaAloD0MI8wGBzqSJW8CUhpRSlGgVS1VoFkdAZ5iwRoRIz3V9lChoBmgJaA9DCNehmpIsKGDAlIaUUpRoFUtQaBZHQGeaxSP2f051fZQoaAZoCWgPQwi6pGq7ie1pwJSGlFKUaBVLe2gWR0Bnm4RXfZVXdX2UKGgGaAloD0MIwM+4cCBGUcCUhpRSlGgVS05oFkdAZ5veANG3F3V9lChoBmgJaA9DCHnnUIaqbVbAlIaUUpRoFUtgaBZHQGeb13dKujh1fZQoaAZoCWgPQwjk3CbcK/towJSGlFKUaBVLZmgWR0BnnGeFtbcHdX2UKGgGaAloD0MIHxMpzeYBMsCUhpRSlGgVS1JoFkdAZ5zfpD/lyXV9lChoBmgJaA9DCFch5SdVhmPAlIaUUpRoFUtaaBZHQGefejmCAc11fZQoaAZoCWgPQwhI+Um1T9tKwJSGlFKUaBVLTGgWR0BnoMtNBWxRdX2UKGgGaAloD0MI7+cU5GfvUsCUhpRSlGgVS5VoFkdAZ6I4o7V8TnV9lChoBmgJaA9DCNvBiH0CeFnAlIaUUpRoFUtgaBZHQGeiYBeXzDp1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:954f713e71f8fcbf65e9f7b67390ec0b263747d880e98ce7e5a804ac6c4f08de
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8cfa5c6f38986befbc3bfe25f12a4ca2ee4ec00a62346690079356e52e82aa0
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (249 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -69.88652607562835, "std_reward": 95.05201947024743, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T08:59:06.420974"}
|