--- pipeline_tag: text-generation inference: false license: apache-2.0 datasets: - bigcode/commitpackft - TIGER-Lab/MathInstruct - meta-math/MetaMathQA - glaiveai/glaive-code-assistant-v3 - glaive-function-calling-v2 - bugdaryan/sql-create-context-instruction - garage-bAInd/Open-Platypus - nvidia/HelpSteer - bigcode/self-oss-instruct-sc2-exec-filter-50k metrics: - code_eval library_name: transformers tags: - code - granite - llama-cpp - gguf-my-repo base_model: ibm-granite/granite-3b-code-instruct-128k model-index: - name: granite-3b-code-instruct-128k results: - task: type: text-generation dataset: name: HumanEvalSynthesis (Python) type: bigcode/humanevalpack metrics: - type: pass@1 value: 53.7 name: pass@1 verified: false - type: pass@1 value: 41.4 name: pass@1 verified: false - type: pass@1 value: 25.1 name: pass@1 verified: false - type: pass@1 value: 26.2 name: pass@1 verified: false - task: type: text-generation dataset: name: RepoQA (Python@16K) type: repoqa metrics: - type: pass@1 (thresh=0.5) value: 48.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 36.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 38.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 39.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 29.0 name: pass@1 (thresh=0.5) verified: false --- # AIronMind/granite-3b-code-instruct-128k-Q4_K_M-GGUF This model was converted to GGUF format from [`ibm-granite/granite-3b-code-instruct-128k`](https://huggingface.co./ibm-granite/granite-3b-code-instruct-128k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./ibm-granite/granite-3b-code-instruct-128k) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo AIronMind/granite-3b-code-instruct-128k-Q4_K_M-GGUF --hf-file granite-3b-code-instruct-128k-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo AIronMind/granite-3b-code-instruct-128k-Q4_K_M-GGUF --hf-file granite-3b-code-instruct-128k-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo AIronMind/granite-3b-code-instruct-128k-Q4_K_M-GGUF --hf-file granite-3b-code-instruct-128k-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo AIronMind/granite-3b-code-instruct-128k-Q4_K_M-GGUF --hf-file granite-3b-code-instruct-128k-q4_k_m.gguf -c 2048 ```