--- base_model: ehristoforu/Gistral-16B datasets: - HuggingFaceH4/grok-conversation-harmless - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized_fixed - HuggingFaceH4/cai-conversation-harmless - meta-math/MetaMathQA - emozilla/yarn-train-tokenized-16k-mistral - snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset - microsoft/orca-math-word-problems-200k - m-a-p/Code-Feedback - teknium/openhermes - lksy/ru_instruct_gpt4 - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch library_name: transformers tags: - mistral - gistral - gistral-16b - multilingual - code - 128k - metamath - grok-1 - anthropic - openhermes - instruct - merge - llama-cpp - gguf-my-repo language: - en - fr - ru - de - ja - ko - zh - it - uk - multilingual - code pipeline_tag: text-generation license: apache-2.0 --- # itlwas/Gistral-16B-Q4_K_M-GGUF This model was converted to GGUF format from [`ehristoforu/Gistral-16B`](https://huggingface.co./ehristoforu/Gistral-16B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./ehristoforu/Gistral-16B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -c 2048 ```