File size: 2,313 Bytes
dbc53ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: llama3.2
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- microsoft/orca-agentinstruct-1M-v1
- microsoft/orca-math-word-problems-200k
- NousResearch/hermes-function-calling-v1
- AI-MO/NuminaMath-CoT
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-mixture
- cognitivecomputations/dolphin-coder
- HuggingFaceTB/smoltalk
- cognitivecomputations/samantha-data
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
base_model: cognitivecomputations/Dolphin3.0-Llama3.2-3B
tags:
- llama-cpp
- gguf-my-repo
---
# itlwas/Dolphin3.0-Llama3.2-3B-Q4_K_M-GGUF
This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Llama3.2-3B`](https://huggingface.co./cognitivecomputations/Dolphin3.0-Llama3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./cognitivecomputations/Dolphin3.0-Llama3.2-3B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo itlwas/Dolphin3.0-Llama3.2-3B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo itlwas/Dolphin3.0-Llama3.2-3B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.2-3b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo itlwas/Dolphin3.0-Llama3.2-3B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo itlwas/Dolphin3.0-Llama3.2-3B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.2-3b-q4_k_m.gguf -c 2048
```
|