--- language: - en - ja license: cc-by-nc-4.0 library_name: transformers tags: - nsfw - Visual novel - roleplay - mergekit - merge - llama-cpp - gguf-my-repo base_model: spow12/ChatWaifu_v2.0_22B datasets: - roleplay4fun/aesir-v1.1 - kalomaze/Opus_Instruct_3k - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Aratako/Synthetic-JP-EN-Coding-Dataset-567k - Aratako/Synthetic-Japanese-Roleplay-gpt-4o-mini-39.6k-formatted - Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-15.3k-formatted - Aratako_Rosebleu_1on1_Dialogues_RP - SkunkworksAI/reasoning-0.01 - jondurbin_gutenberg_dpo - nbeerbower_gutenberg2_dpo - jondurbi_py_dpo - jondurbin_truthy_dpo - flammenai_character_roleplay_DPO - kyujinpy_orca_math_dpo - argilla_Capybara_Preferences - antiven0m_physical_reasoning_dpo - aixsatoshi_Swallow_MX_chatbot_DPO pipeline_tag: text-generation model-index: - name: ChatWaifu_v2.0_22B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 65.11 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 42.29 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 18.58 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.96 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 5.59 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.51 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B name: Open LLM Leaderboard --- # AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF This model was converted to GGUF format from [`spow12/ChatWaifu_v2.0_22B`](https://huggingface.co./spow12/ChatWaifu_v2.0_22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./spow12/ChatWaifu_v2.0_22B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -c 2048 ```