--- language: - en license: apache-2.0 library_name: transformers datasets: - Open-Orca/SlimOrca - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - meta-math/MetaMathQA pipeline_tag: text-generation arxiv: 2401.02731 model-index: - name: Camelidae-8x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.63 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 79.18 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 50.1 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.86 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.24 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 22.82 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B name: Open LLM Leaderboard --- # Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks ## News - 1/10/2024 - Camelidae models are now available on [🤗HuggingFace](https://huggingface.co./hywu). - 1/4/2024 - We released the paper, [Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731). - 12/22/2023 - We released the training [repo](https://github.com/wuhy68/Parameter-Efficient-MoE) that craft the dense model with LLaMA architecture to the MoE model. ## Introduction Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way. Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including [QLoRA](https://arxiv.org/abs/2305.14314) and [Adapter](https://arxiv.org/abs/1902.00751) to perfrom Efficient [Sparse Upcycling](https://arxiv.org/abs/2212.05055). ## Model Lists | Model | Download |---|--- Camelidae-8x7B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x7B) Camelidae-8x13B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x13B) Camelidae-8x34B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x34B) ## Performance | Model | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | TriviaQA (0shot) | |----------------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:|:----------------:| | GPT3.5 | 70.0% | 57.1% | **34.1%** | **48.1%** | - | 85.5% | - | | Camelidae-8x34B | 75.6% | **78.3%** | **22.6%** | **43.9%** | **41.4%** | 85.3% | **63.4%** | | SUSChat-34B | **76.4%** | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | 56.1% | | Mixtral-8x7B-instruct | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | **86.5%** | 57.7% | | LLaMA2-70B-chat | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | 63.0% | | Camelidae-8x13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | 59.4% | | LLaMA2-13B-chat | 53.9% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | 55.0% | | Camelidae-8x7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | 51.0% | | LLaMA2-7B-chat | 47.2% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | 46.4% | We bold the highest scores for open-source models and all models separately. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True) # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True) # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval() # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval() model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval() inputs = tokenizer('### Human:\nHow are you?\n### Assistant:\n', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) # I am doing well, thank you. ``` ## Citation ```bibtex @article{wu2024parameter, title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks}, author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei}, journal={arXiv preprint arXiv:2401.02731}, year={2024} } ``` ## License The source code in this repo is licensed under the [Apache 2.0 License](https://github.com/wuhy68/Parameter-Efficient-MoE/blob/master/LICENSE). Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from [facebookresearch](https://github.com/facebookresearch/llama/blob/main/LICENSE) and [01-ai](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_hywu__Camelidae-8x7B) | Metric |Value| |---------------------------------|----:| |Avg. |54.47| |AI2 Reasoning Challenge (25-Shot)|55.63| |HellaSwag (10-Shot) |79.18| |MMLU (5-Shot) |50.10| |TruthfulQA (0-shot) |42.86| |Winogrande (5-shot) |76.24| |GSM8k (5-shot) |22.82|