--- datasets: - Open-Orca/SlimOrca - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - meta-math/MetaMathQA language: - en library_name: transformers pipeline_tag: text-generation arxiv: 2401.02731 license: apache-2.0 --- # Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks ## News - 1/10/2024 - Camelidae models are now available on [🤗HuggingFace](https://huggingface.co./hywu). - 1/4/2024 - We released the paper, [Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731). - 12/22/2023 - We released the training [repo](https://github.com/wuhy68/Parameter-Efficient-MoE) that craft the dense model with LLaMA architecture to the MoE model. ## Introduction Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way. Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including [QLoRA](https://arxiv.org/abs/2305.14314) and [Adapter](https://arxiv.org/abs/1902.00751) to perfrom Efficient [Sparse Upcycling](https://arxiv.org/abs/2212.05055). ## Model Lists | Model | Download |---|--- Camelidae-8x7B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x7B) Camelidae-8x13B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x13B) Camelidae-8x34B | [🤗HuggingFace](https://huggingface.co./hywu/Camelidae-8x34B) ## Performance | Model | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | TriviaQA (0shot) | |----------------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:|:----------------:| | GPT3.5 | 70.0% | 57.1% | **34.1%** | **48.1%** | - | 85.5% | - | | Camelidae-8x34B | 75.6% | **78.3%** | **22.6%** | **43.9%** | **41.4%** | 85.3% | **63.4%** | | SUSChat-34B | **76.4%** | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | 56.1% | | Mixtral-8x7B-instruct | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | **86.5%** | 57.7% | | LLaMA2-70B-chat | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | 63.0% | | Camelidae-8x13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | 59.4% | | LLaMA2-13B-chat | 53.9% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | 55.0% | | Camelidae-8x7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | 51.0% | | LLaMA2-7B-chat | 47.2% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | 46.4% | We bold the highest scores for open-source models and all models separately. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True) # tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True) # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval() # model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval() model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval() inputs = tokenizer('### Human:\nHow are you?\n ### Assistant:\n', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` ## Citation ```bibtex @article{wu2024parameter, title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks}, author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei}, journal={arXiv preprint arXiv:2401.02731}, year={2024} } ``` ## License The source code in this repo is licensed under the [Apache 2.0 License](https://github.com/wuhy68/Parameter-Efficient-MoE/blob/master/LICENSE). Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from [facebookresearch](https://github.com/facebookresearch/llama/blob/main/LICENSE) and [01-ai](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).