--- license: apache-2.0 license_link: https://huggingface.co./huihui-ai/Qwen2.5-Coder-0.5-Instruct-abliterate/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-0.5B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - abliterated - uncensored --- # huihui-ai/Qwen2.5-Code-0.5B-Instruct-abliterated This is an uncensored version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co./Qwen/Qwen2.5-Coder-0.5B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). Qwen2.5-Coder uncensored version has covered six mainstream model sizes, [0.5](https://huggingface.co./huihui-ai/Qwen2.5-Coder-0.5B-Instruct-abliterated), [1.5](https://huggingface.co./huihui-ai/Qwen2.5-Coder-1.5B-Instruct-abliterated), [3](https://huggingface.co./huihui-ai/Qwen2.5-Coder-3B-Instruct-abliterated), [7](https://huggingface.co./huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated), [14](https://huggingface.co./huihui-ai/Qwen2.5-Coder-14B-Instruct-abliterated), [32](https://huggingface.co./huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) billion parameters. If the desired result is not achieved, you can clear the conversation and try again. ## ollama You can use [huihui_ai/qwen2.5-coder-abliterate:0.5b](https://ollama.com/huihui_ai/qwen2.5-coder-abliterate:0.5b) directly, ``` ollama run huihui_ai/qwen2.5-coder-abliterate:0.5b ``` ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-Code-0.5B-Instruct-abliterated" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ```