--- language: code thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png datasets: - code_search_net license: apache-2.0 base_model: huggingface/CodeBERTa-small-v1 --- # CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯 To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co./huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*). We add a sequence classification head on top of the model. On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below). ## Quick start: using the raw model ```python CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id" tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID) input_ids = tokenizer.encode(CODE_TO_IDENTIFY) logits = model(input_ids)[0] language_idx = logits.argmax() # index for the resulting label ``` ## Quick start: using Pipelines 💪 ```python from transformers import TextClassificationPipeline pipeline = TextClassificationPipeline( model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID), tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) ) pipeline(CODE_TO_IDENTIFY) ``` Let's start with something very easy: ```python pipeline(""" def f(x): return x**2 """) # [{'label': 'python', 'score': 0.9999965}] ``` Now let's probe shorter code samples: ```python pipeline("const foo = 'bar'") # [{'label': 'javascript', 'score': 0.9977546}] ``` What if I remove the `const` token from the assignment? ```python pipeline("foo = 'bar'") # [{'label': 'javascript', 'score': 0.7176245}] ``` For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it: ```python pipeline("foo = u'bar'") # [{'label': 'python', 'score': 0.7638422}] ``` This is now detected as Python (Notice the `u` string modifier). Okay, enough with the JS and Python domination already! Let's try fancier languages: ```python pipeline("echo $FOO") # [{'label': 'php', 'score': 0.9995257}] ``` (Yes, I used the word "fancy" to describe PHP 😅) ```python pipeline("outcome := rand.Intn(6) + 1") # [{'label': 'go', 'score': 0.9936151}] ``` Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language: ```python pipeline(":=") # [{'label': 'go', 'score': 0.9998052}] ``` By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token: ```python self.tokenizer.encode(" :=", add_special_tokens=False) # [521] ```
## Fine-tuning code
```python import gzip import json import logging import os from pathlib import Path from typing import Dict, List, Tuple import numpy as np import torch from sklearn.metrics import f1_score from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer from tokenizers.processors import BertProcessing from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader, Dataset from torch.utils.data.dataset import Dataset from torch.utils.tensorboard.writer import SummaryWriter from tqdm import tqdm, trange from transformers import RobertaForSequenceClassification from transformers.data.metrics import acc_and_f1, simple_accuracy logging.basicConfig(level=logging.INFO) CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1" LANGUAGES = [ "go", "java", "javascript", "php", "python", "ruby", ] FILES_PER_LANGUAGE = 1 EVALUATE = True # Set up tokenizer tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",) tokenizer._tokenizer.post_processor = BertProcessing( ("", tokenizer.token_to_id("")), ("", tokenizer.token_to_id("")), ) tokenizer.enable_truncation(max_length=512) # Set up Tensorboard tb_writer = SummaryWriter() class CodeSearchNetDataset(Dataset): examples: List[Tuple[List[int], int]] def __init__(self, split: str = "train"): """ train | valid | test """ self.examples = [] src_files = [] for language in LANGUAGES: src_files += list( Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz") )[:FILES_PER_LANGUAGE] for src_file in src_files: label = src_file.parents[3].name label_idx = LANGUAGES.index(label) print("🔥", src_file, label) lines = [] fh = gzip.open(src_file, mode="rt", encoding="utf-8") for line in fh: o = json.loads(line) lines.append(o["code"]) examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)] self.examples += examples print("🔥🔥") def __len__(self): return len(self.examples) def __getitem__(self, i): # We’ll pad at the batch level. return self.examples[i] model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES)) train_dataset = CodeSearchNetDataset(split="train") eval_dataset = CodeSearchNetDataset(split="test") def collate(examples): input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1) labels = torch.tensor([x[1] for x in examples]) # ^^ uncessary .unsqueeze(-1) return input_ids, labels train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate) batch = next(iter(train_dataloader)) model.to("cuda") model.train() for param in model.roberta.parameters(): param.requires_grad = False ## ^^ Only train final layer. print(f"num params:", model.num_parameters()) print(f"num trainable params:", model.num_parameters(only_trainable=True)) def evaluate(): eval_loss = 0.0 nb_eval_steps = 0 preds = np.empty((0), dtype=np.int64) out_label_ids = np.empty((0), dtype=np.int64) model.eval() eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate) for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")): with torch.no_grad(): outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) loss = outputs[0] logits = outputs[1] eval_loss += loss.mean().item() nb_eval_steps += 1 preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps acc = simple_accuracy(preds, out_label_ids) f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro") print("=== Eval: loss ===", eval_loss) print("=== Eval: acc. ===", acc) print("=== Eval: f1 ===", f1) # print(acc_and_f1(preds, out_label_ids)) tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step) ### Training loop global_step = 0 train_iterator = trange(0, 4, desc="Epoch") optimizer = torch.optim.AdamW(model.parameters()) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration") for step, (input_ids, labels) in enumerate(epoch_iterator): optimizer.zero_grad() outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) loss = outputs[0] loss.backward() tb_writer.add_scalar("training_loss", loss.item(), global_step) optimizer.step() global_step += 1 if EVALUATE and global_step % 50 == 0: evaluate() model.train() evaluate() os.makedirs("./models/CodeBERT-language-id", exist_ok=True) model.save_pretrained("./models/CodeBERT-language-id") ```

## CodeSearchNet citation
```bibtex @article{husain_codesearchnet_2019, title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, shorttitle = {{CodeSearchNet} {Challenge}}, url = {http://arxiv.org/abs/1909.09436}, urldate = {2020-03-12}, journal = {arXiv:1909.09436 [cs, stat]}, author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, month = sep, year = {2019}, note = {arXiv: 1909.09436}, } ```