--- license: mit tags: - generated_from_trainer - pytorch model-index: - name: dolly-v2-3-openassistant-guanaco results: [] datasets: - timdettmers/openassistant-guanaco library_name: peft pipeline_tag: text-generation --- # dolly-v2-3-openassistant-guanaco This model is a fine-tuned version of [databricks/dolly-v2-3b](https://huggingface.co./databricks/dolly-v2-3b) on timdettmers/openassistant-guanaco dataset. ## Model description This is a PEFT model, hence the model file and the config files are * adapter_model.bin * adapter_config.bin This fined-tuned model was created with the following bitsandbytes config
BitsAndBytesConfig(load_in_8bit = True, bnb_4bit_quant_type = 'nf4', bnb_4bit_compute_type = torch.bfloat16, bnb_4bit_use_double_quant = True) The peft_config is as follows: peft_config = LoraConfig( lora_alpha=16, lora_dropout = 0.1, r = 64, bias = "none", task_type = "CAUSAL_LM", target_modules = [ 'query_key_value', 'dense', 'dense_h_to_4h', 'dense_4h_to_h' ] )
## Intended uses & limitations Model is intended for fair use only. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.03 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3