--- language: - ar license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper small ar - fine-tune Alpha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 59.88133333333333 --- # whisper small ar - fine-tune Alpha This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4592 - Wer: 59.8813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2057 | 1.66 | 1000 | 0.3395 | 61.9160 | | 0.0859 | 3.32 | 2000 | 0.3406 | 57.3707 | | 0.0513 | 4.98 | 3000 | 0.3730 | 62.0467 | | 0.0157 | 6.64 | 4000 | 0.4284 | 60.84 | | 0.0072 | 8.31 | 5000 | 0.4592 | 59.8813 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2