--- language: - id license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Breeze DSW Indonesian - tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 id type: mozilla-foundation/common_voice_16_0 config: id split: test args: id metrics: - name: Wer type: wer value: 43.44465912227436 --- # Breeze DSW Indonesian - tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the mozilla-foundation/common_voice_16_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.7090 - Wer: 43.4447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.99 | 0.1 | 100 | 0.8486 | 54.2460 | | 0.7896 | 1.04 | 200 | 0.7578 | 48.3899 | | 0.4164 | 1.14 | 300 | 0.7388 | 49.3284 | | 0.5456 | 2.09 | 400 | 0.7178 | 45.7954 | | 0.4761 | 3.03 | 500 | 0.7109 | 45.2158 | | 0.2674 | 3.13 | 600 | 0.7007 | 44.8431 | | 0.3628 | 4.08 | 700 | 0.7026 | 44.2497 | | 0.2565 | 5.02 | 800 | 0.7085 | 44.5073 | | 0.2147 | 5.12 | 900 | 0.7090 | 43.4447 | | 0.28 | 6.06 | 1000 | 0.7134 | 43.9553 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0