Update README.md
Browse files
README.md
CHANGED
@@ -31,32 +31,49 @@ The model uses a CLIP backbone with a ViT-L/14 Transformer architecture as an im
|
|
31 |
|
32 |
### Use with Transformers
|
33 |
|
34 |
-
```
|
35 |
import requests
|
36 |
from PIL import Image
|
|
|
37 |
import torch
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
|
42 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14")
|
43 |
|
44 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
45 |
image = Image.open(requests.get(url, stream=True).raw)
|
46 |
texts = [["a photo of a cat", "a photo of a dog"]]
|
47 |
inputs = processor(text=texts, images=image, return_tensors="pt")
|
48 |
-
outputs = model(**inputs)
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
56 |
text = texts[i]
|
57 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
58 |
|
59 |
-
# Print detected objects and rescaled box coordinates
|
60 |
for box, score, label in zip(boxes, scores, labels):
|
61 |
box = [round(i, 2) for i in box.tolist()]
|
62 |
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
|
|
31 |
|
32 |
### Use with Transformers
|
33 |
|
34 |
+
```python
|
35 |
import requests
|
36 |
from PIL import Image
|
37 |
+
import numpy as np
|
38 |
import torch
|
39 |
+
from transformers import AutoProcessor, Owlv2ForObjectDetection
|
40 |
+
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
41 |
|
42 |
+
processor = AutoProcessor.from_pretrained("google/owlv2-large-patch14")
|
|
|
|
|
43 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14")
|
44 |
|
45 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
46 |
image = Image.open(requests.get(url, stream=True).raw)
|
47 |
texts = [["a photo of a cat", "a photo of a dog"]]
|
48 |
inputs = processor(text=texts, images=image, return_tensors="pt")
|
|
|
49 |
|
50 |
+
# forward pass
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model(**inputs)
|
53 |
+
|
54 |
+
# Note: boxes need to be visualized on the padded, unnormalized image
|
55 |
+
# hence we'll set the target image sizes (height, width) based on that
|
56 |
+
|
57 |
+
def get_preprocessed_image(pixel_values):
|
58 |
+
pixel_values = pixel_values.squeeze().numpy()
|
59 |
+
unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
|
60 |
+
unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
|
61 |
+
unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
|
62 |
+
unnormalized_image = Image.fromarray(unnormalized_image)
|
63 |
+
return unnormalized_image
|
64 |
+
|
65 |
+
unnormalized_image = get_preprocessed_image(inputs.pixel_values)
|
66 |
+
|
67 |
+
target_sizes = torch.Tensor([unnormalized_image.size[::-1]])
|
68 |
+
# Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
|
69 |
+
results = processor.post_process_object_detection(
|
70 |
+
outputs=outputs, threshold=0.2, target_sizes=target_sizes
|
71 |
+
)
|
72 |
|
73 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
74 |
text = texts[i]
|
75 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
76 |
|
|
|
77 |
for box, score, label in zip(boxes, scores, labels):
|
78 |
box = [round(i, 2) for i in box.tolist()]
|
79 |
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|