--- license: apache-2.0 tags: - moe - mixtral language: - ar - en - fr - es - de - hi - id - zh --- # Multirial MultiRial is the first ever multilingual Mixture of experts model. * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co./fblgit/UNA-TheBeagle-7b-v1) * [openchat/openchat-3.5-0106](https://huggingface.co./openchat/openchat-3.5-0106) * [azale-ai/Starstreak-7b-beta](https://huggingface.co./azale-ai/Starstreak-7b-beta) * [gagan3012/Mistral_arabic_dpo](https://huggingface.co./gagan3012/Mistral_arabic_dpo) * [davidkim205/komt-mistral-7b-v1](https://huggingface.co./davidkim205/komt-mistral-7b-v1) * [OpenBuddy/openbuddy-zephyr-7b-v14.1](https://huggingface.co./OpenBuddy/openbuddy-zephyr-7b-v14.1) * [manishiitg/open-aditi-hi-v1](https://huggingface.co./manishiitg/open-aditi-hi-v1) * [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co./VAGOsolutions/SauerkrautLM-7b-v1-mistral) ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/Multirial" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```