fyaronskiy commited on
Commit
ce12729
1 Parent(s): 3bbbbde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -26,6 +26,7 @@ dataset for multilabel classification. Model can be used to extract all emotions
26
  # Usage
27
  Using model with Huggingface Transformers:
28
  ```python
 
29
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
30
  tokenizer = AutoTokenizer.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
31
  model = AutoModelForSequenceClassification.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
@@ -42,13 +43,12 @@ def predict_emotions(text):
42
  inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
43
  with torch.no_grad():
44
  logits = model(**inputs).logits
45
- probas = torch.sigmoid(logits).squeeze(dim=0)
46
- probas = probas.cpu().numpy()
47
-
48
- class_binary_labels = (probas > np.array(best_thresholds)).astype(int)
49
  return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1]
50
 
51
  print(predict_emotions('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
 
52
  #['admiration', 'love']
53
  ```
54
 
 
26
  # Usage
27
  Using model with Huggingface Transformers:
28
  ```python
29
+ import torch
30
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
31
  tokenizer = AutoTokenizer.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
32
  model = AutoModelForSequenceClassification.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
 
43
  inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
44
  with torch.no_grad():
45
  logits = model(**inputs).logits
46
+ probas = torch.sigmoid(logits).squeeze(dim=0)
47
+ class_binary_labels = (probas > torch.tensor(best_thresholds)).int()
 
 
48
  return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1]
49
 
50
  print(predict_emotions('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
51
+
52
  #['admiration', 'love']
53
  ```
54