import torch from PIL import Image import base64 from io import BytesIO from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info class EndpointHandler: def __init__(self, path=""): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and processor self.model = Qwen2VLForConditionalGeneration.from_pretrained( path, torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32, device_map="auto" ).to(self.device) self.processor = AutoProcessor.from_pretrained(path) def __call__(self, data): # Extract image and text from the input data image_data = data.get("inputs", {}).get("image", "") text_prompt = data.get("inputs", {}).get("text", "") if not image_data or not text_prompt: return {"error": "Both 'image' and 'text' must be provided in the input data."} # Process the image data try: image_bytes = base64.b64decode(image_data) image = Image.open(BytesIO(image_bytes)).convert("RGB") except Exception as e: return {"error": f"Failed to process image data: {e}"} # Prepare the input in the format expected by the model messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_prompt}, ], } ] # Process the input text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # Move inputs to the appropriate device inputs = {k: v.to(self.device) for k, v in inputs.items()} # Generate output with torch.no_grad(): output_ids = self.model.generate( **inputs, max_new_tokens=2000, # Increased from 128 to 2000 num_return_sequences=1, do_sample=True, temperature=0.7, top_p=0.95 ) # Decode the output output_text = self.processor.batch_decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] return {"generated_text": output_text}