from datasets import load_dataset, load_from_disk | |
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer | |
from transformers import AutoConfig | |
model_dir = "./" # ${MODEL_DIR} | |
# load roberta-large config | |
config = AutoConfig.from_pretrained("roberta-large") | |
config.save_pretrained(model_dir) | |
# load dataset | |
#dataset = load_dataset("oscar", "unshuffled_deduplicated_fi", split="train") | |
dataset = load_from_disk("DATASET_PATH_HERE") | |
dataset = dataset["train"] | |
# Instantiate tokenizer | |
tokenizer = ByteLevelBPETokenizer() | |
def batch_iterator(batch_size=1000): | |
for i in range(0, len(dataset), batch_size): | |
yield dataset[i: i + batch_size]["text"] | |
# Customized training | |
tokenizer.train_from_iterator(batch_iterator(), vocab_size=config.vocab_size, min_frequency=2, special_tokens=[ | |
"<s>", | |
"<pad>", | |
"</s>", | |
"<unk>", | |
"<mask>", | |
]) | |
# Save files to disk | |
tokenizer.save(f"{model_dir}/tokenizer.json") |