flaviagiammarino
commited on
Commit
·
5622644
1
Parent(s):
6d5afa0
Upload 2 files
Browse files- scripts/pt_example.py +2 -2
- scripts/tf_example.py +1 -1
scripts/pt_example.py
CHANGED
@@ -10,7 +10,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
10 |
model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device)
|
11 |
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
|
12 |
|
13 |
-
img_url = "https://
|
14 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
15 |
input_boxes = [95., 255., 190., 350.]
|
16 |
|
@@ -42,4 +42,4 @@ show_mask(mask=probs[0] > 0.5, ax=ax[1], random_color=False)
|
|
42 |
show_box(input_boxes, ax[1])
|
43 |
ax[1].set_title("MedSAM Segmentation")
|
44 |
ax[1].axis("off")
|
45 |
-
plt.show()
|
|
|
10 |
model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device)
|
11 |
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
|
12 |
|
13 |
+
img_url = "https://huggingface.co/flaviagiammarino/medsam-vit-base/resolve/main/scripts/input.png"
|
14 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
15 |
input_boxes = [95., 255., 190., 350.]
|
16 |
|
|
|
42 |
show_box(input_boxes, ax[1])
|
43 |
ax[1].set_title("MedSAM Segmentation")
|
44 |
ax[1].axis("off")
|
45 |
+
plt.show()
|
scripts/tf_example.py
CHANGED
@@ -8,7 +8,7 @@ import tensorflow as tf
|
|
8 |
model = TFSamModel.from_pretrained("flaviagiammarino/medsam-vit-base")
|
9 |
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
|
10 |
|
11 |
-
img_url = "https://
|
12 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
13 |
input_boxes = [95., 255., 190., 350.]
|
14 |
|
|
|
8 |
model = TFSamModel.from_pretrained("flaviagiammarino/medsam-vit-base")
|
9 |
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
|
10 |
|
11 |
+
img_url = "https://huggingface.co/flaviagiammarino/medsam-vit-base/resolve/main/scripts/input.png"
|
12 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
13 |
input_boxes = [95., 255., 190., 350.]
|
14 |
|