firqaaa commited on
Commit
5337102
1 Parent(s): c1f2148

Add SetFit ABSA model

Browse files
Files changed (5) hide show
  1. README.md +213 -171
  2. config.json +1 -1
  3. config_setfit.json +2 -2
  4. model.safetensors +1 -1
  5. model_head.pkl +1 -1
README.md CHANGED
@@ -9,16 +9,18 @@ tags:
9
  metrics:
10
  - accuracy
11
  widget:
12
- - text: suasana:suasana ramai tapi suasana seperti bistro getaran tipe bistro
13
- - text: makanan:dua kali terakhir saya memesan dari sini, makanan saya sangat pedas
14
- sehingga saya hampir tidak bisa memakan, dan bumbu tersebut menghilangkan rasa
15
- hidangan.
16
- - text: tempat:makan di tempat, suasana menghemat, tetapi di meja anda, ini adalah
17
- pengalaman yang sangat mengecewakan.
18
- - text: suasana:mungkin agak ramai di akhir pekan, tapi suasana bagus dan ini adalah
19
- makanan prancis terbaik yang bisa anda temukan di area tersebut penuh sesak
20
- - text: porsi:mereka disajikan dengan hidangan pembuka gratis dan porsi cocok untuk
21
- makan siang melayani
 
 
22
  pipeline_tag: text-classification
23
  inference: false
24
  base_model: firqaaa/indo-sentence-bert-base
@@ -34,7 +36,7 @@ model-index:
34
  split: test
35
  metrics:
36
  - type: accuracy
37
- value: 0.8956953642384106
38
  name: Accuracy
39
  ---
40
 
@@ -60,8 +62,8 @@ This model was trained within the context of a larger system for ABSA, which loo
60
  - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
61
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
62
  - **spaCy Model:** id_core_news_trf
63
- - **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect)
64
- - **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity)
65
  - **Maximum Sequence Length:** 512 tokens
66
  - **Number of Classes:** 2 classes
67
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
@@ -85,7 +87,7 @@ This model was trained within the context of a larger system for ABSA, which loo
85
  ### Metrics
86
  | Label | Accuracy |
87
  |:--------|:---------|
88
- | **all** | 0.8957 |
89
 
90
  ## Uses
91
 
@@ -104,8 +106,8 @@ from setfit import AbsaModel
104
 
105
  # Download from the 🤗 Hub
106
  model = AbsaModel.from_pretrained(
107
- "firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect",
108
- "firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity",
109
  )
110
  # Run inference
111
  preds = model("The food was great, but the venue is just way too busy.")
@@ -140,15 +142,15 @@ preds = model("The food was great, but the venue is just way too busy.")
140
  ### Training Set Metrics
141
  | Training set | Min | Median | Max |
142
  |:-------------|:----|:--------|:----|
143
- | Word count | 2 | 20.1601 | 59 |
144
 
145
  | Label | Training Sample Count |
146
  |:----------|:----------------------|
147
- | no aspect | 2123 |
148
- | aspect | 1076 |
149
 
150
  ### Training Hyperparameters
151
- - batch_size: (32, 32)
152
  - num_epochs: (1, 1)
153
  - max_steps: -1
154
  - sampling_strategy: oversampling
@@ -167,157 +169,197 @@ preds = model("The food was great, but the venue is just way too busy.")
167
  ### Training Results
168
  | Epoch | Step | Training Loss | Validation Loss |
169
  |:----------:|:--------:|:-------------:|:---------------:|
170
- | 0.0000 | 1 | 0.318 | - |
171
- | 0.0003 | 50 | 0.285 | - |
172
- | 0.0006 | 100 | 0.2917 | - |
173
- | 0.0008 | 150 | 0.3018 | - |
174
- | 0.0011 | 200 | 0.2513 | - |
175
- | 0.0014 | 250 | 0.2847 | - |
176
- | 0.0017 | 300 | 0.227 | - |
177
- | 0.0020 | 350 | 0.2601 | - |
178
- | 0.0023 | 400 | 0.241 | - |
179
- | 0.0025 | 450 | 0.2765 | - |
180
- | 0.0028 | 500 | 0.2799 | 0.2687 |
181
- | 0.0031 | 550 | 0.2872 | - |
182
- | 0.0034 | 600 | 0.2723 | - |
183
- | 0.0037 | 650 | 0.2297 | - |
184
- | 0.0040 | 700 | 0.2448 | - |
185
- | 0.0042 | 750 | 0.3296 | - |
186
- | 0.0045 | 800 | 0.2564 | - |
187
- | 0.0048 | 850 | 0.2406 | - |
188
- | 0.0051 | 900 | 0.2776 | - |
189
- | 0.0054 | 950 | 0.246 | - |
190
- | 0.0056 | 1000 | 0.2801 | 0.2589 |
191
- | 0.0059 | 1050 | 0.2562 | - |
192
- | 0.0062 | 1100 | 0.2639 | - |
193
- | 0.0065 | 1150 | 0.2322 | - |
194
- | 0.0068 | 1200 | 0.275 | - |
195
- | 0.0071 | 1250 | 0.2568 | - |
196
- | 0.0073 | 1300 | 0.2457 | - |
197
- | 0.0076 | 1350 | 0.2367 | - |
198
- | 0.0079 | 1400 | 0.2878 | - |
199
- | 0.0082 | 1450 | 0.2297 | - |
200
- | 0.0085 | 1500 | 0.2557 | 0.2506 |
201
- | 0.0088 | 1550 | 0.241 | - |
202
- | 0.0090 | 1600 | 0.252 | - |
203
- | 0.0093 | 1650 | 0.2485 | - |
204
- | 0.0096 | 1700 | 0.2562 | - |
205
- | 0.0099 | 1750 | 0.2311 | - |
206
- | 0.0102 | 1800 | 0.2222 | - |
207
- | 0.0104 | 1850 | 0.212 | - |
208
- | 0.0107 | 1900 | 0.2595 | - |
209
- | 0.0110 | 1950 | 0.2293 | - |
210
- | 0.0113 | 2000 | 0.1934 | 0.2393 |
211
- | 0.0116 | 2050 | 0.2119 | - |
212
- | 0.0119 | 2100 | 0.2109 | - |
213
- | 0.0121 | 2150 | 0.1875 | - |
214
- | 0.0124 | 2200 | 0.2096 | - |
215
- | 0.0127 | 2250 | 0.1701 | - |
216
- | 0.0130 | 2300 | 0.2227 | - |
217
- | 0.0133 | 2350 | 0.1832 | - |
218
- | 0.0135 | 2400 | 0.1838 | - |
219
- | 0.0138 | 2450 | 0.1846 | - |
220
- | 0.0141 | 2500 | 0.1452 | 0.186 |
221
- | 0.0144 | 2550 | 0.1366 | - |
222
- | 0.0147 | 2600 | 0.124 | - |
223
- | 0.0150 | 2650 | 0.1385 | - |
224
- | 0.0152 | 2700 | 0.0681 | - |
225
- | 0.0155 | 2750 | 0.0811 | - |
226
- | 0.0158 | 2800 | 0.0794 | - |
227
- | 0.0161 | 2850 | 0.1466 | - |
228
- | 0.0164 | 2900 | 0.0964 | - |
229
- | 0.0167 | 2950 | 0.174 | - |
230
- | 0.0169 | 3000 | 0.0116 | 0.1658 |
231
- | 0.0172 | 3050 | 0.1171 | - |
232
- | 0.0175 | 3100 | 0.0301 | - |
233
- | 0.0178 | 3150 | 0.0568 | - |
234
- | 0.0181 | 3200 | 0.0448 | - |
235
- | 0.0183 | 3250 | 0.0353 | - |
236
- | 0.0186 | 3300 | 0.0721 | - |
237
- | 0.0189 | 3350 | 0.009 | - |
238
- | 0.0192 | 3400 | 0.0367 | - |
239
- | 0.0195 | 3450 | 0.0251 | - |
240
- | 0.0198 | 3500 | 0.0323 | 0.1925 |
241
- | 0.0200 | 3550 | 0.0286 | - |
242
- | 0.0203 | 3600 | 0.0524 | - |
243
- | 0.0206 | 3650 | 0.0404 | - |
244
- | 0.0209 | 3700 | 0.0037 | - |
245
- | 0.0212 | 3750 | 0.0365 | - |
246
- | 0.0215 | 3800 | 0.0214 | - |
247
- | 0.0217 | 3850 | 0.0769 | - |
248
- | 0.0220 | 3900 | 0.0317 | - |
249
- | 0.0223 | 3950 | 0.001 | - |
250
- | 0.0226 | 4000 | 0.0115 | 0.1733 |
251
- | 0.0229 | 4050 | 0.0553 | - |
252
- | 0.0231 | 4100 | 0.0025 | - |
253
- | 0.0234 | 4150 | 0.0023 | - |
254
- | 0.0237 | 4200 | 0.0014 | - |
255
- | 0.0240 | 4250 | 0.0306 | - |
256
- | 0.0243 | 4300 | 0.0352 | - |
257
- | 0.0246 | 4350 | 0.0009 | - |
258
- | 0.0248 | 4400 | 0.0302 | - |
259
- | 0.0251 | 4450 | 0.0026 | - |
260
- | 0.0254 | 4500 | 0.0213 | 0.1793 |
261
- | 0.0257 | 4550 | 0.0009 | - |
262
- | 0.0260 | 4600 | 0.0315 | - |
263
- | 0.0263 | 4650 | 0.0005 | - |
264
- | 0.0265 | 4700 | 0.0005 | - |
265
- | 0.0268 | 4750 | 0.0014 | - |
266
- | 0.0271 | 4800 | 0.0503 | - |
267
- | 0.0274 | 4850 | 0.0007 | - |
268
- | 0.0277 | 4900 | 0.0012 | - |
269
- | 0.0279 | 4950 | 0.001 | - |
270
- | **0.0282** | **5000** | **0.0014** | **0.1525** |
271
- | 0.0285 | 5050 | 0.0292 | - |
272
- | 0.0288 | 5100 | 0.0004 | - |
273
- | 0.0291 | 5150 | 0.0602 | - |
274
- | 0.0294 | 5200 | 0.0292 | - |
275
- | 0.0296 | 5250 | 0.0006 | - |
276
- | 0.0299 | 5300 | 0.0009 | - |
277
- | 0.0302 | 5350 | 0.0007 | - |
278
- | 0.0305 | 5400 | 0.0823 | - |
279
- | 0.0308 | 5450 | 0.0319 | - |
280
- | 0.0311 | 5500 | 0.0005 | 0.1707 |
281
- | 0.0313 | 5550 | 0.0003 | - |
282
- | 0.0316 | 5600 | 0.0022 | - |
283
- | 0.0319 | 5650 | 0.047 | - |
284
- | 0.0322 | 5700 | 0.0299 | - |
285
- | 0.0325 | 5750 | 0.0312 | - |
286
- | 0.0327 | 5800 | 0.0004 | - |
287
- | 0.0330 | 5850 | 0.0301 | - |
288
- | 0.0333 | 5900 | 0.0002 | - |
289
- | 0.0336 | 5950 | 0.1056 | - |
290
- | 0.0339 | 6000 | 0.0345 | 0.1859 |
291
- | 0.0342 | 6050 | 0.0005 | - |
292
- | 0.0344 | 6100 | 0.0224 | - |
293
- | 0.0347 | 6150 | 0.0004 | - |
294
- | 0.0350 | 6200 | 0.0055 | - |
295
- | 0.0353 | 6250 | 0.0307 | - |
296
- | 0.0356 | 6300 | 0.0297 | - |
297
- | 0.0358 | 6350 | 0.0627 | - |
298
- | 0.0361 | 6400 | 0.0002 | - |
299
- | 0.0364 | 6450 | 0.0216 | - |
300
- | 0.0367 | 6500 | 0.001 | 0.1692 |
301
- | 0.0370 | 6550 | 0.0046 | - |
302
- | 0.0373 | 6600 | 0.031 | - |
303
- | 0.0375 | 6650 | 0.0298 | - |
304
- | 0.0378 | 6700 | 0.0003 | - |
305
- | 0.0381 | 6750 | 0.0018 | - |
306
- | 0.0384 | 6800 | 0.0002 | - |
307
- | 0.0387 | 6850 | 0.0124 | - |
308
- | 0.0390 | 6900 | 0.0002 | - |
309
- | 0.0392 | 6950 | 0.0002 | - |
310
- | 0.0395 | 7000 | 0.0002 | 0.1866 |
311
- | 0.0398 | 7050 | 0.0001 | - |
312
- | 0.0401 | 7100 | 0.0038 | - |
313
- | 0.0404 | 7150 | 0.0296 | - |
314
- | 0.0406 | 7200 | 0.0002 | - |
315
- | 0.0409 | 7250 | 0.0032 | - |
316
- | 0.0412 | 7300 | 0.001 | - |
317
- | 0.0415 | 7350 | 0.0003 | - |
318
- | 0.0418 | 7400 | 0.0369 | - |
319
- | 0.0421 | 7450 | 0.0524 | - |
320
- | 0.0423 | 7500 | 0.0002 | 0.1956 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
 
322
  * The bold row denotes the saved checkpoint.
323
  ### Framework Versions
 
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: timur:unggul di atas tetangga di jalan 6 timur, taj mahal juga sangat sebanding,
13
+ dalam kualitas makanan, dengan baluchi yang terlalu dipuji (dan kurang layak).
14
+ - text: makanan:saya sangat merekomendasikan cafe st bart's untuk makanan mereka,
15
+ suasana dan layanan yang luar biasa melayani
16
+ - text: terong parmesan:parmesan terung juga enak, dan teman saya yang besar di manhattan
17
+ metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang yang lebih
18
+ enak dengan saus daging terong parmesan
19
+ - text: tuna lelehan:kami memesan tuna lelehan - itu datang dengan keluar keju yang
20
+ ha membuat sandwich tuna daging tuna
21
+ - text: manhattan metakan:parmesan terung juga enak, dan teman saya yang besar di
22
+ manhattan metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang
23
+ yang lebih enak dengan saus daging ziti panggang dengan saus daging
24
  pipeline_tag: text-classification
25
  inference: false
26
  base_model: firqaaa/indo-sentence-bert-base
 
36
  split: test
37
  metrics:
38
  - type: accuracy
39
+ value: 0.9087072065030483
40
  name: Accuracy
41
  ---
42
 
 
62
  - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
63
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
64
  - **spaCy Model:** id_core_news_trf
65
+ - **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect)
66
+ - **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity)
67
  - **Maximum Sequence Length:** 512 tokens
68
  - **Number of Classes:** 2 classes
69
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
 
87
  ### Metrics
88
  | Label | Accuracy |
89
  |:--------|:---------|
90
+ | **all** | 0.9087 |
91
 
92
  ## Uses
93
 
 
106
 
107
  # Download from the 🤗 Hub
108
  model = AbsaModel.from_pretrained(
109
+ "firqaaa/indo-setfit-absa-bert-base-restaurants-aspect",
110
+ "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
111
  )
112
  # Run inference
113
  preds = model("The food was great, but the venue is just way too busy.")
 
142
  ### Training Set Metrics
143
  | Training set | Min | Median | Max |
144
  |:-------------|:----|:--------|:----|
145
+ | Word count | 2 | 19.7819 | 59 |
146
 
147
  | Label | Training Sample Count |
148
  |:----------|:----------------------|
149
+ | no aspect | 2939 |
150
+ | aspect | 1468 |
151
 
152
  ### Training Hyperparameters
153
+ - batch_size: (16, 16)
154
  - num_epochs: (1, 1)
155
  - max_steps: -1
156
  - sampling_strategy: oversampling
 
169
  ### Training Results
170
  | Epoch | Step | Training Loss | Validation Loss |
171
  |:----------:|:--------:|:-------------:|:---------------:|
172
+ | 0.0000 | 1 | 0.3135 | - |
173
+ | 0.0001 | 50 | 0.3401 | - |
174
+ | 0.0001 | 100 | 0.3212 | - |
175
+ | 0.0002 | 150 | 0.3641 | - |
176
+ | 0.0003 | 200 | 0.3317 | - |
177
+ | 0.0004 | 250 | 0.2809 | - |
178
+ | 0.0004 | 300 | 0.2446 | - |
179
+ | 0.0005 | 350 | 0.284 | - |
180
+ | 0.0006 | 400 | 0.3257 | - |
181
+ | 0.0007 | 450 | 0.2996 | - |
182
+ | 0.0007 | 500 | 0.209 | 0.295 |
183
+ | 0.0008 | 550 | 0.2121 | - |
184
+ | 0.0009 | 600 | 0.2204 | - |
185
+ | 0.0010 | 650 | 0.3023 | - |
186
+ | 0.0010 | 700 | 0.3253 | - |
187
+ | 0.0011 | 750 | 0.233 | - |
188
+ | 0.0012 | 800 | 0.3131 | - |
189
+ | 0.0013 | 850 | 0.2873 | - |
190
+ | 0.0013 | 900 | 0.2028 | - |
191
+ | 0.0014 | 950 | 0.2608 | - |
192
+ | 0.0015 | 1000 | 0.2842 | 0.2696 |
193
+ | 0.0016 | 1050 | 0.2297 | - |
194
+ | 0.0016 | 1100 | 0.266 | - |
195
+ | 0.0017 | 1150 | 0.2771 | - |
196
+ | 0.0018 | 1200 | 0.2347 | - |
197
+ | 0.0019 | 1250 | 0.2539 | - |
198
+ | 0.0019 | 1300 | 0.3409 | - |
199
+ | 0.0020 | 1350 | 0.2925 | - |
200
+ | 0.0021 | 1400 | 0.2608 | - |
201
+ | 0.0021 | 1450 | 0.2792 | - |
202
+ | 0.0022 | 1500 | 0.261 | 0.2636 |
203
+ | 0.0023 | 1550 | 0.2596 | - |
204
+ | 0.0024 | 1600 | 0.2563 | - |
205
+ | 0.0024 | 1650 | 0.2329 | - |
206
+ | 0.0025 | 1700 | 0.2954 | - |
207
+ | 0.0026 | 1750 | 0.3329 | - |
208
+ | 0.0027 | 1800 | 0.2138 | - |
209
+ | 0.0027 | 1850 | 0.2591 | - |
210
+ | 0.0028 | 1900 | 0.268 | - |
211
+ | 0.0029 | 1950 | 0.2144 | - |
212
+ | 0.0030 | 2000 | 0.2361 | 0.2586 |
213
+ | 0.0030 | 2050 | 0.2322 | - |
214
+ | 0.0031 | 2100 | 0.2646 | - |
215
+ | 0.0032 | 2150 | 0.2018 | - |
216
+ | 0.0033 | 2200 | 0.2579 | - |
217
+ | 0.0033 | 2250 | 0.2501 | - |
218
+ | 0.0034 | 2300 | 0.2657 | - |
219
+ | 0.0035 | 2350 | 0.2272 | - |
220
+ | 0.0036 | 2400 | 0.2383 | - |
221
+ | 0.0036 | 2450 | 0.2615 | - |
222
+ | 0.0037 | 2500 | 0.2818 | 0.2554 |
223
+ | 0.0038 | 2550 | 0.2616 | - |
224
+ | 0.0039 | 2600 | 0.2225 | - |
225
+ | 0.0039 | 2650 | 0.2749 | - |
226
+ | 0.0040 | 2700 | 0.2572 | - |
227
+ | 0.0041 | 2750 | 0.2729 | - |
228
+ | 0.0041 | 2800 | 0.2559 | - |
229
+ | 0.0042 | 2850 | 0.2363 | - |
230
+ | 0.0043 | 2900 | 0.2518 | - |
231
+ | 0.0044 | 2950 | 0.1948 | - |
232
+ | 0.0044 | 3000 | 0.2842 | 0.2538 |
233
+ | 0.0045 | 3050 | 0.2243 | - |
234
+ | 0.0046 | 3100 | 0.2186 | - |
235
+ | 0.0047 | 3150 | 0.2829 | - |
236
+ | 0.0047 | 3200 | 0.2101 | - |
237
+ | 0.0048 | 3250 | 0.2156 | - |
238
+ | 0.0049 | 3300 | 0.2539 | - |
239
+ | 0.0050 | 3350 | 0.3005 | - |
240
+ | 0.0050 | 3400 | 0.2699 | - |
241
+ | 0.0051 | 3450 | 0.2431 | - |
242
+ | 0.0052 | 3500 | 0.2931 | 0.2515 |
243
+ | 0.0053 | 3550 | 0.2032 | - |
244
+ | 0.0053 | 3600 | 0.2451 | - |
245
+ | 0.0054 | 3650 | 0.2419 | - |
246
+ | 0.0055 | 3700 | 0.2267 | - |
247
+ | 0.0056 | 3750 | 0.2945 | - |
248
+ | 0.0056 | 3800 | 0.2689 | - |
249
+ | 0.0057 | 3850 | 0.2596 | - |
250
+ | 0.0058 | 3900 | 0.2978 | - |
251
+ | 0.0059 | 3950 | 0.2876 | - |
252
+ | 0.0059 | 4000 | 0.2484 | 0.2482 |
253
+ | 0.0060 | 4050 | 0.2698 | - |
254
+ | 0.0061 | 4100 | 0.2155 | - |
255
+ | 0.0061 | 4150 | 0.2474 | - |
256
+ | 0.0062 | 4200 | 0.2683 | - |
257
+ | 0.0063 | 4250 | 0.2979 | - |
258
+ | 0.0064 | 4300 | 0.2866 | - |
259
+ | 0.0064 | 4350 | 0.2604 | - |
260
+ | 0.0065 | 4400 | 0.1989 | - |
261
+ | 0.0066 | 4450 | 0.2708 | - |
262
+ | 0.0067 | 4500 | 0.2705 | 0.2407 |
263
+ | 0.0067 | 4550 | 0.2144 | - |
264
+ | 0.0068 | 4600 | 0.2503 | - |
265
+ | 0.0069 | 4650 | 0.2193 | - |
266
+ | 0.0070 | 4700 | 0.1796 | - |
267
+ | 0.0070 | 4750 | 0.2384 | - |
268
+ | 0.0071 | 4800 | 0.1933 | - |
269
+ | 0.0072 | 4850 | 0.2248 | - |
270
+ | 0.0073 | 4900 | 0.22 | - |
271
+ | 0.0073 | 4950 | 0.2052 | - |
272
+ | 0.0074 | 5000 | 0.2314 | 0.224 |
273
+ | 0.0075 | 5050 | 0.2279 | - |
274
+ | 0.0076 | 5100 | 0.2198 | - |
275
+ | 0.0076 | 5150 | 0.2332 | - |
276
+ | 0.0077 | 5200 | 0.1666 | - |
277
+ | 0.0078 | 5250 | 0.1949 | - |
278
+ | 0.0079 | 5300 | 0.1802 | - |
279
+ | 0.0079 | 5350 | 0.2496 | - |
280
+ | 0.0080 | 5400 | 0.2399 | - |
281
+ | 0.0081 | 5450 | 0.2042 | - |
282
+ | 0.0082 | 5500 | 0.1859 | 0.2077 |
283
+ | 0.0082 | 5550 | 0.2216 | - |
284
+ | 0.0083 | 5600 | 0.1227 | - |
285
+ | 0.0084 | 5650 | 0.2351 | - |
286
+ | 0.0084 | 5700 | 0.2735 | - |
287
+ | 0.0085 | 5750 | 0.1008 | - |
288
+ | 0.0086 | 5800 | 0.1568 | - |
289
+ | 0.0087 | 5850 | 0.1211 | - |
290
+ | 0.0087 | 5900 | 0.0903 | - |
291
+ | 0.0088 | 5950 | 0.1473 | - |
292
+ | 0.0089 | 6000 | 0.1167 | 0.1877 |
293
+ | 0.0090 | 6050 | 0.206 | - |
294
+ | 0.0090 | 6100 | 0.2392 | - |
295
+ | 0.0091 | 6150 | 0.116 | - |
296
+ | 0.0092 | 6200 | 0.1493 | - |
297
+ | 0.0093 | 6250 | 0.1373 | - |
298
+ | 0.0093 | 6300 | 0.1163 | - |
299
+ | 0.0094 | 6350 | 0.0669 | - |
300
+ | 0.0095 | 6400 | 0.0756 | - |
301
+ | 0.0096 | 6450 | 0.0788 | - |
302
+ | 0.0096 | 6500 | 0.1816 | 0.1838 |
303
+ | 0.0097 | 6550 | 0.1288 | - |
304
+ | 0.0098 | 6600 | 0.0946 | - |
305
+ | 0.0099 | 6650 | 0.1374 | - |
306
+ | 0.0099 | 6700 | 0.2167 | - |
307
+ | 0.0100 | 6750 | 0.0759 | - |
308
+ | 0.0101 | 6800 | 0.1543 | - |
309
+ | 0.0102 | 6850 | 0.0573 | - |
310
+ | 0.0102 | 6900 | 0.1169 | - |
311
+ | 0.0103 | 6950 | 0.0294 | - |
312
+ | **0.0104** | **7000** | **0.1241** | **0.1769** |
313
+ | 0.0104 | 7050 | 0.0803 | - |
314
+ | 0.0105 | 7100 | 0.0139 | - |
315
+ | 0.0106 | 7150 | 0.01 | - |
316
+ | 0.0107 | 7200 | 0.0502 | - |
317
+ | 0.0107 | 7250 | 0.0647 | - |
318
+ | 0.0108 | 7300 | 0.0117 | - |
319
+ | 0.0109 | 7350 | 0.0894 | - |
320
+ | 0.0110 | 7400 | 0.0101 | - |
321
+ | 0.0110 | 7450 | 0.0066 | - |
322
+ | 0.0111 | 7500 | 0.0347 | 0.1899 |
323
+ | 0.0112 | 7550 | 0.0893 | - |
324
+ | 0.0113 | 7600 | 0.0127 | - |
325
+ | 0.0113 | 7650 | 0.1285 | - |
326
+ | 0.0114 | 7700 | 0.0049 | - |
327
+ | 0.0115 | 7750 | 0.0571 | - |
328
+ | 0.0116 | 7800 | 0.0068 | - |
329
+ | 0.0116 | 7850 | 0.0586 | - |
330
+ | 0.0117 | 7900 | 0.0788 | - |
331
+ | 0.0118 | 7950 | 0.0655 | - |
332
+ | 0.0119 | 8000 | 0.0052 | 0.1807 |
333
+ | 0.0119 | 8050 | 0.0849 | - |
334
+ | 0.0120 | 8100 | 0.0133 | - |
335
+ | 0.0121 | 8150 | 0.0445 | - |
336
+ | 0.0122 | 8200 | 0.0118 | - |
337
+ | 0.0122 | 8250 | 0.0118 | - |
338
+ | 0.0123 | 8300 | 0.063 | - |
339
+ | 0.0124 | 8350 | 0.0751 | - |
340
+ | 0.0124 | 8400 | 0.058 | - |
341
+ | 0.0125 | 8450 | 0.002 | - |
342
+ | 0.0126 | 8500 | 0.0058 | 0.1804 |
343
+ | 0.0127 | 8550 | 0.0675 | - |
344
+ | 0.0127 | 8600 | 0.0067 | - |
345
+ | 0.0128 | 8650 | 0.0087 | - |
346
+ | 0.0129 | 8700 | 0.0028 | - |
347
+ | 0.0130 | 8750 | 0.0626 | - |
348
+ | 0.0130 | 8800 | 0.0563 | - |
349
+ | 0.0131 | 8850 | 0.0012 | - |
350
+ | 0.0132 | 8900 | 0.0067 | - |
351
+ | 0.0133 | 8950 | 0.0011 | - |
352
+ | 0.0133 | 9000 | 0.0105 | 0.189 |
353
+ | 0.0134 | 9050 | 0.101 | - |
354
+ | 0.0135 | 9100 | 0.1162 | - |
355
+ | 0.0136 | 9150 | 0.0593 | - |
356
+ | 0.0136 | 9200 | 0.0004 | - |
357
+ | 0.0137 | 9250 | 0.0012 | - |
358
+ | 0.0138 | 9300 | 0.0022 | - |
359
+ | 0.0139 | 9350 | 0.0033 | - |
360
+ | 0.0139 | 9400 | 0.0025 | - |
361
+ | 0.0140 | 9450 | 0.0578 | - |
362
+ | 0.0141 | 9500 | 0.0012 | 0.1967 |
363
 
364
  * The bold row denotes the saved checkpoint.
365
  ### Framework Versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "models/step_5000/",
3
  "_num_labels": 5,
4
  "architectures": [
5
  "BertModel"
 
1
  {
2
+ "_name_or_path": "models/step_7000/",
3
  "_num_labels": 5,
4
  "architectures": [
5
  "BertModel"
config_setfit.json CHANGED
@@ -1,9 +1,9 @@
1
  {
 
 
2
  "labels": [
3
  "no aspect",
4
  "aspect"
5
  ],
6
- "spacy_model": "id_core_news_trf",
7
- "span_context": 0,
8
  "normalize_embeddings": false
9
  }
 
1
  {
2
+ "span_context": 0,
3
+ "spacy_model": "id_core_news_trf",
4
  "labels": [
5
  "no aspect",
6
  "aspect"
7
  ],
 
 
8
  "normalize_embeddings": false
9
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:750a46f1d07228a858c136ad0509ec2a6dd52997af062fd530d8734cf58f4791
3
  size 497787752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29233c2bea6ca2fe88b694613d04013b0b67623a2dbf4494aee27ac45ff818b
3
  size 497787752
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:011e8ba92930711af035d43595e1651e89bd77ceee14803306a69ccd46bcd5ce
3
  size 6991
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74777165396345dcca555ac0cb5187b2cedef4dd6bc091916cc1be89543210a9
3
  size 6991