Add SetFit ABSA model
Browse files- README.md +213 -171
- config.json +1 -1
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -9,16 +9,18 @@ tags:
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
- text:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
pipeline_tag: text-classification
|
23 |
inference: false
|
24 |
base_model: firqaaa/indo-sentence-bert-base
|
@@ -34,7 +36,7 @@ model-index:
|
|
34 |
split: test
|
35 |
metrics:
|
36 |
- type: accuracy
|
37 |
-
value: 0.
|
38 |
name: Accuracy
|
39 |
---
|
40 |
|
@@ -60,8 +62,8 @@ This model was trained within the context of a larger system for ABSA, which loo
|
|
60 |
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
|
61 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
62 |
- **spaCy Model:** id_core_news_trf
|
63 |
-
- **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-
|
64 |
-
- **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-
|
65 |
- **Maximum Sequence Length:** 512 tokens
|
66 |
- **Number of Classes:** 2 classes
|
67 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
@@ -85,7 +87,7 @@ This model was trained within the context of a larger system for ABSA, which loo
|
|
85 |
### Metrics
|
86 |
| Label | Accuracy |
|
87 |
|:--------|:---------|
|
88 |
-
| **all** | 0.
|
89 |
|
90 |
## Uses
|
91 |
|
@@ -104,8 +106,8 @@ from setfit import AbsaModel
|
|
104 |
|
105 |
# Download from the 🤗 Hub
|
106 |
model = AbsaModel.from_pretrained(
|
107 |
-
"firqaaa/indo-setfit-absa-
|
108 |
-
"firqaaa/indo-setfit-absa-
|
109 |
)
|
110 |
# Run inference
|
111 |
preds = model("The food was great, but the venue is just way too busy.")
|
@@ -140,15 +142,15 @@ preds = model("The food was great, but the venue is just way too busy.")
|
|
140 |
### Training Set Metrics
|
141 |
| Training set | Min | Median | Max |
|
142 |
|:-------------|:----|:--------|:----|
|
143 |
-
| Word count | 2 |
|
144 |
|
145 |
| Label | Training Sample Count |
|
146 |
|:----------|:----------------------|
|
147 |
-
| no aspect |
|
148 |
-
| aspect |
|
149 |
|
150 |
### Training Hyperparameters
|
151 |
-
- batch_size: (
|
152 |
- num_epochs: (1, 1)
|
153 |
- max_steps: -1
|
154 |
- sampling_strategy: oversampling
|
@@ -167,157 +169,197 @@ preds = model("The food was great, but the venue is just way too busy.")
|
|
167 |
### Training Results
|
168 |
| Epoch | Step | Training Loss | Validation Loss |
|
169 |
|:----------:|:--------:|:-------------:|:---------------:|
|
170 |
-
| 0.0000 | 1 | 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
216 |
-
| 0.
|
217 |
-
| 0.
|
218 |
-
| 0.
|
219 |
-
| 0.
|
220 |
-
| 0.
|
221 |
-
| 0.
|
222 |
-
| 0.
|
223 |
-
| 0.
|
224 |
-
| 0.
|
225 |
-
| 0.
|
226 |
-
| 0.
|
227 |
-
| 0.
|
228 |
-
| 0.
|
229 |
-
| 0.
|
230 |
-
| 0.
|
231 |
-
| 0.
|
232 |
-
| 0.
|
233 |
-
| 0.
|
234 |
-
| 0.
|
235 |
-
| 0.
|
236 |
-
| 0.
|
237 |
-
| 0.
|
238 |
-
| 0.
|
239 |
-
| 0.
|
240 |
-
| 0.
|
241 |
-
| 0.
|
242 |
-
| 0.
|
243 |
-
| 0.
|
244 |
-
| 0.
|
245 |
-
| 0.
|
246 |
-
| 0.
|
247 |
-
| 0.
|
248 |
-
| 0.
|
249 |
-
| 0.
|
250 |
-
| 0.
|
251 |
-
| 0.
|
252 |
-
| 0.
|
253 |
-
| 0.
|
254 |
-
| 0.
|
255 |
-
| 0.
|
256 |
-
| 0.
|
257 |
-
| 0.
|
258 |
-
| 0.
|
259 |
-
| 0.
|
260 |
-
| 0.
|
261 |
-
| 0.
|
262 |
-
| 0.
|
263 |
-
| 0.
|
264 |
-
| 0.
|
265 |
-
| 0.
|
266 |
-
| 0.
|
267 |
-
| 0.
|
268 |
-
| 0.
|
269 |
-
| 0.
|
270 |
-
|
|
271 |
-
| 0.
|
272 |
-
| 0.
|
273 |
-
| 0.
|
274 |
-
| 0.
|
275 |
-
| 0.
|
276 |
-
| 0.
|
277 |
-
| 0.
|
278 |
-
| 0.
|
279 |
-
| 0.
|
280 |
-
| 0.
|
281 |
-
| 0.
|
282 |
-
| 0.
|
283 |
-
| 0.
|
284 |
-
| 0.
|
285 |
-
| 0.
|
286 |
-
| 0.
|
287 |
-
| 0.
|
288 |
-
| 0.
|
289 |
-
| 0.
|
290 |
-
| 0.
|
291 |
-
| 0.
|
292 |
-
| 0.
|
293 |
-
| 0.
|
294 |
-
| 0.
|
295 |
-
| 0.
|
296 |
-
| 0.
|
297 |
-
| 0.
|
298 |
-
| 0.
|
299 |
-
| 0.
|
300 |
-
| 0.
|
301 |
-
| 0.
|
302 |
-
| 0.
|
303 |
-
| 0.
|
304 |
-
| 0.
|
305 |
-
| 0.
|
306 |
-
| 0.
|
307 |
-
| 0.
|
308 |
-
| 0.
|
309 |
-
| 0.
|
310 |
-
| 0.
|
311 |
-
| 0.
|
312 |
-
| 0.
|
313 |
-
| 0.
|
314 |
-
| 0.
|
315 |
-
| 0.
|
316 |
-
| 0.
|
317 |
-
| 0.
|
318 |
-
| 0.
|
319 |
-
| 0.
|
320 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
* The bold row denotes the saved checkpoint.
|
323 |
### Framework Versions
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: timur:unggul di atas tetangga di jalan 6 timur, taj mahal juga sangat sebanding,
|
13 |
+
dalam kualitas makanan, dengan baluchi yang terlalu dipuji (dan kurang layak).
|
14 |
+
- text: makanan:saya sangat merekomendasikan cafe st bart's untuk makanan mereka,
|
15 |
+
suasana dan layanan yang luar biasa melayani
|
16 |
+
- text: terong parmesan:parmesan terung juga enak, dan teman saya yang besar di manhattan
|
17 |
+
metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang yang lebih
|
18 |
+
enak dengan saus daging terong parmesan
|
19 |
+
- text: tuna lelehan:kami memesan tuna lelehan - itu datang dengan keluar keju yang
|
20 |
+
ha membuat sandwich tuna daging tuna
|
21 |
+
- text: manhattan metakan:parmesan terung juga enak, dan teman saya yang besar di
|
22 |
+
manhattan metakan bahwa tidak ada orang yang pantas mendapatkan ziti panggang
|
23 |
+
yang lebih enak dengan saus daging ziti panggang dengan saus daging
|
24 |
pipeline_tag: text-classification
|
25 |
inference: false
|
26 |
base_model: firqaaa/indo-sentence-bert-base
|
|
|
36 |
split: test
|
37 |
metrics:
|
38 |
- type: accuracy
|
39 |
+
value: 0.9087072065030483
|
40 |
name: Accuracy
|
41 |
---
|
42 |
|
|
|
62 |
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
|
63 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
64 |
- **spaCy Model:** id_core_news_trf
|
65 |
+
- **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect)
|
66 |
+
- **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity)
|
67 |
- **Maximum Sequence Length:** 512 tokens
|
68 |
- **Number of Classes:** 2 classes
|
69 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
|
|
87 |
### Metrics
|
88 |
| Label | Accuracy |
|
89 |
|:--------|:---------|
|
90 |
+
| **all** | 0.9087 |
|
91 |
|
92 |
## Uses
|
93 |
|
|
|
106 |
|
107 |
# Download from the 🤗 Hub
|
108 |
model = AbsaModel.from_pretrained(
|
109 |
+
"firqaaa/indo-setfit-absa-bert-base-restaurants-aspect",
|
110 |
+
"firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
|
111 |
)
|
112 |
# Run inference
|
113 |
preds = model("The food was great, but the venue is just way too busy.")
|
|
|
142 |
### Training Set Metrics
|
143 |
| Training set | Min | Median | Max |
|
144 |
|:-------------|:----|:--------|:----|
|
145 |
+
| Word count | 2 | 19.7819 | 59 |
|
146 |
|
147 |
| Label | Training Sample Count |
|
148 |
|:----------|:----------------------|
|
149 |
+
| no aspect | 2939 |
|
150 |
+
| aspect | 1468 |
|
151 |
|
152 |
### Training Hyperparameters
|
153 |
+
- batch_size: (16, 16)
|
154 |
- num_epochs: (1, 1)
|
155 |
- max_steps: -1
|
156 |
- sampling_strategy: oversampling
|
|
|
169 |
### Training Results
|
170 |
| Epoch | Step | Training Loss | Validation Loss |
|
171 |
|:----------:|:--------:|:-------------:|:---------------:|
|
172 |
+
| 0.0000 | 1 | 0.3135 | - |
|
173 |
+
| 0.0001 | 50 | 0.3401 | - |
|
174 |
+
| 0.0001 | 100 | 0.3212 | - |
|
175 |
+
| 0.0002 | 150 | 0.3641 | - |
|
176 |
+
| 0.0003 | 200 | 0.3317 | - |
|
177 |
+
| 0.0004 | 250 | 0.2809 | - |
|
178 |
+
| 0.0004 | 300 | 0.2446 | - |
|
179 |
+
| 0.0005 | 350 | 0.284 | - |
|
180 |
+
| 0.0006 | 400 | 0.3257 | - |
|
181 |
+
| 0.0007 | 450 | 0.2996 | - |
|
182 |
+
| 0.0007 | 500 | 0.209 | 0.295 |
|
183 |
+
| 0.0008 | 550 | 0.2121 | - |
|
184 |
+
| 0.0009 | 600 | 0.2204 | - |
|
185 |
+
| 0.0010 | 650 | 0.3023 | - |
|
186 |
+
| 0.0010 | 700 | 0.3253 | - |
|
187 |
+
| 0.0011 | 750 | 0.233 | - |
|
188 |
+
| 0.0012 | 800 | 0.3131 | - |
|
189 |
+
| 0.0013 | 850 | 0.2873 | - |
|
190 |
+
| 0.0013 | 900 | 0.2028 | - |
|
191 |
+
| 0.0014 | 950 | 0.2608 | - |
|
192 |
+
| 0.0015 | 1000 | 0.2842 | 0.2696 |
|
193 |
+
| 0.0016 | 1050 | 0.2297 | - |
|
194 |
+
| 0.0016 | 1100 | 0.266 | - |
|
195 |
+
| 0.0017 | 1150 | 0.2771 | - |
|
196 |
+
| 0.0018 | 1200 | 0.2347 | - |
|
197 |
+
| 0.0019 | 1250 | 0.2539 | - |
|
198 |
+
| 0.0019 | 1300 | 0.3409 | - |
|
199 |
+
| 0.0020 | 1350 | 0.2925 | - |
|
200 |
+
| 0.0021 | 1400 | 0.2608 | - |
|
201 |
+
| 0.0021 | 1450 | 0.2792 | - |
|
202 |
+
| 0.0022 | 1500 | 0.261 | 0.2636 |
|
203 |
+
| 0.0023 | 1550 | 0.2596 | - |
|
204 |
+
| 0.0024 | 1600 | 0.2563 | - |
|
205 |
+
| 0.0024 | 1650 | 0.2329 | - |
|
206 |
+
| 0.0025 | 1700 | 0.2954 | - |
|
207 |
+
| 0.0026 | 1750 | 0.3329 | - |
|
208 |
+
| 0.0027 | 1800 | 0.2138 | - |
|
209 |
+
| 0.0027 | 1850 | 0.2591 | - |
|
210 |
+
| 0.0028 | 1900 | 0.268 | - |
|
211 |
+
| 0.0029 | 1950 | 0.2144 | - |
|
212 |
+
| 0.0030 | 2000 | 0.2361 | 0.2586 |
|
213 |
+
| 0.0030 | 2050 | 0.2322 | - |
|
214 |
+
| 0.0031 | 2100 | 0.2646 | - |
|
215 |
+
| 0.0032 | 2150 | 0.2018 | - |
|
216 |
+
| 0.0033 | 2200 | 0.2579 | - |
|
217 |
+
| 0.0033 | 2250 | 0.2501 | - |
|
218 |
+
| 0.0034 | 2300 | 0.2657 | - |
|
219 |
+
| 0.0035 | 2350 | 0.2272 | - |
|
220 |
+
| 0.0036 | 2400 | 0.2383 | - |
|
221 |
+
| 0.0036 | 2450 | 0.2615 | - |
|
222 |
+
| 0.0037 | 2500 | 0.2818 | 0.2554 |
|
223 |
+
| 0.0038 | 2550 | 0.2616 | - |
|
224 |
+
| 0.0039 | 2600 | 0.2225 | - |
|
225 |
+
| 0.0039 | 2650 | 0.2749 | - |
|
226 |
+
| 0.0040 | 2700 | 0.2572 | - |
|
227 |
+
| 0.0041 | 2750 | 0.2729 | - |
|
228 |
+
| 0.0041 | 2800 | 0.2559 | - |
|
229 |
+
| 0.0042 | 2850 | 0.2363 | - |
|
230 |
+
| 0.0043 | 2900 | 0.2518 | - |
|
231 |
+
| 0.0044 | 2950 | 0.1948 | - |
|
232 |
+
| 0.0044 | 3000 | 0.2842 | 0.2538 |
|
233 |
+
| 0.0045 | 3050 | 0.2243 | - |
|
234 |
+
| 0.0046 | 3100 | 0.2186 | - |
|
235 |
+
| 0.0047 | 3150 | 0.2829 | - |
|
236 |
+
| 0.0047 | 3200 | 0.2101 | - |
|
237 |
+
| 0.0048 | 3250 | 0.2156 | - |
|
238 |
+
| 0.0049 | 3300 | 0.2539 | - |
|
239 |
+
| 0.0050 | 3350 | 0.3005 | - |
|
240 |
+
| 0.0050 | 3400 | 0.2699 | - |
|
241 |
+
| 0.0051 | 3450 | 0.2431 | - |
|
242 |
+
| 0.0052 | 3500 | 0.2931 | 0.2515 |
|
243 |
+
| 0.0053 | 3550 | 0.2032 | - |
|
244 |
+
| 0.0053 | 3600 | 0.2451 | - |
|
245 |
+
| 0.0054 | 3650 | 0.2419 | - |
|
246 |
+
| 0.0055 | 3700 | 0.2267 | - |
|
247 |
+
| 0.0056 | 3750 | 0.2945 | - |
|
248 |
+
| 0.0056 | 3800 | 0.2689 | - |
|
249 |
+
| 0.0057 | 3850 | 0.2596 | - |
|
250 |
+
| 0.0058 | 3900 | 0.2978 | - |
|
251 |
+
| 0.0059 | 3950 | 0.2876 | - |
|
252 |
+
| 0.0059 | 4000 | 0.2484 | 0.2482 |
|
253 |
+
| 0.0060 | 4050 | 0.2698 | - |
|
254 |
+
| 0.0061 | 4100 | 0.2155 | - |
|
255 |
+
| 0.0061 | 4150 | 0.2474 | - |
|
256 |
+
| 0.0062 | 4200 | 0.2683 | - |
|
257 |
+
| 0.0063 | 4250 | 0.2979 | - |
|
258 |
+
| 0.0064 | 4300 | 0.2866 | - |
|
259 |
+
| 0.0064 | 4350 | 0.2604 | - |
|
260 |
+
| 0.0065 | 4400 | 0.1989 | - |
|
261 |
+
| 0.0066 | 4450 | 0.2708 | - |
|
262 |
+
| 0.0067 | 4500 | 0.2705 | 0.2407 |
|
263 |
+
| 0.0067 | 4550 | 0.2144 | - |
|
264 |
+
| 0.0068 | 4600 | 0.2503 | - |
|
265 |
+
| 0.0069 | 4650 | 0.2193 | - |
|
266 |
+
| 0.0070 | 4700 | 0.1796 | - |
|
267 |
+
| 0.0070 | 4750 | 0.2384 | - |
|
268 |
+
| 0.0071 | 4800 | 0.1933 | - |
|
269 |
+
| 0.0072 | 4850 | 0.2248 | - |
|
270 |
+
| 0.0073 | 4900 | 0.22 | - |
|
271 |
+
| 0.0073 | 4950 | 0.2052 | - |
|
272 |
+
| 0.0074 | 5000 | 0.2314 | 0.224 |
|
273 |
+
| 0.0075 | 5050 | 0.2279 | - |
|
274 |
+
| 0.0076 | 5100 | 0.2198 | - |
|
275 |
+
| 0.0076 | 5150 | 0.2332 | - |
|
276 |
+
| 0.0077 | 5200 | 0.1666 | - |
|
277 |
+
| 0.0078 | 5250 | 0.1949 | - |
|
278 |
+
| 0.0079 | 5300 | 0.1802 | - |
|
279 |
+
| 0.0079 | 5350 | 0.2496 | - |
|
280 |
+
| 0.0080 | 5400 | 0.2399 | - |
|
281 |
+
| 0.0081 | 5450 | 0.2042 | - |
|
282 |
+
| 0.0082 | 5500 | 0.1859 | 0.2077 |
|
283 |
+
| 0.0082 | 5550 | 0.2216 | - |
|
284 |
+
| 0.0083 | 5600 | 0.1227 | - |
|
285 |
+
| 0.0084 | 5650 | 0.2351 | - |
|
286 |
+
| 0.0084 | 5700 | 0.2735 | - |
|
287 |
+
| 0.0085 | 5750 | 0.1008 | - |
|
288 |
+
| 0.0086 | 5800 | 0.1568 | - |
|
289 |
+
| 0.0087 | 5850 | 0.1211 | - |
|
290 |
+
| 0.0087 | 5900 | 0.0903 | - |
|
291 |
+
| 0.0088 | 5950 | 0.1473 | - |
|
292 |
+
| 0.0089 | 6000 | 0.1167 | 0.1877 |
|
293 |
+
| 0.0090 | 6050 | 0.206 | - |
|
294 |
+
| 0.0090 | 6100 | 0.2392 | - |
|
295 |
+
| 0.0091 | 6150 | 0.116 | - |
|
296 |
+
| 0.0092 | 6200 | 0.1493 | - |
|
297 |
+
| 0.0093 | 6250 | 0.1373 | - |
|
298 |
+
| 0.0093 | 6300 | 0.1163 | - |
|
299 |
+
| 0.0094 | 6350 | 0.0669 | - |
|
300 |
+
| 0.0095 | 6400 | 0.0756 | - |
|
301 |
+
| 0.0096 | 6450 | 0.0788 | - |
|
302 |
+
| 0.0096 | 6500 | 0.1816 | 0.1838 |
|
303 |
+
| 0.0097 | 6550 | 0.1288 | - |
|
304 |
+
| 0.0098 | 6600 | 0.0946 | - |
|
305 |
+
| 0.0099 | 6650 | 0.1374 | - |
|
306 |
+
| 0.0099 | 6700 | 0.2167 | - |
|
307 |
+
| 0.0100 | 6750 | 0.0759 | - |
|
308 |
+
| 0.0101 | 6800 | 0.1543 | - |
|
309 |
+
| 0.0102 | 6850 | 0.0573 | - |
|
310 |
+
| 0.0102 | 6900 | 0.1169 | - |
|
311 |
+
| 0.0103 | 6950 | 0.0294 | - |
|
312 |
+
| **0.0104** | **7000** | **0.1241** | **0.1769** |
|
313 |
+
| 0.0104 | 7050 | 0.0803 | - |
|
314 |
+
| 0.0105 | 7100 | 0.0139 | - |
|
315 |
+
| 0.0106 | 7150 | 0.01 | - |
|
316 |
+
| 0.0107 | 7200 | 0.0502 | - |
|
317 |
+
| 0.0107 | 7250 | 0.0647 | - |
|
318 |
+
| 0.0108 | 7300 | 0.0117 | - |
|
319 |
+
| 0.0109 | 7350 | 0.0894 | - |
|
320 |
+
| 0.0110 | 7400 | 0.0101 | - |
|
321 |
+
| 0.0110 | 7450 | 0.0066 | - |
|
322 |
+
| 0.0111 | 7500 | 0.0347 | 0.1899 |
|
323 |
+
| 0.0112 | 7550 | 0.0893 | - |
|
324 |
+
| 0.0113 | 7600 | 0.0127 | - |
|
325 |
+
| 0.0113 | 7650 | 0.1285 | - |
|
326 |
+
| 0.0114 | 7700 | 0.0049 | - |
|
327 |
+
| 0.0115 | 7750 | 0.0571 | - |
|
328 |
+
| 0.0116 | 7800 | 0.0068 | - |
|
329 |
+
| 0.0116 | 7850 | 0.0586 | - |
|
330 |
+
| 0.0117 | 7900 | 0.0788 | - |
|
331 |
+
| 0.0118 | 7950 | 0.0655 | - |
|
332 |
+
| 0.0119 | 8000 | 0.0052 | 0.1807 |
|
333 |
+
| 0.0119 | 8050 | 0.0849 | - |
|
334 |
+
| 0.0120 | 8100 | 0.0133 | - |
|
335 |
+
| 0.0121 | 8150 | 0.0445 | - |
|
336 |
+
| 0.0122 | 8200 | 0.0118 | - |
|
337 |
+
| 0.0122 | 8250 | 0.0118 | - |
|
338 |
+
| 0.0123 | 8300 | 0.063 | - |
|
339 |
+
| 0.0124 | 8350 | 0.0751 | - |
|
340 |
+
| 0.0124 | 8400 | 0.058 | - |
|
341 |
+
| 0.0125 | 8450 | 0.002 | - |
|
342 |
+
| 0.0126 | 8500 | 0.0058 | 0.1804 |
|
343 |
+
| 0.0127 | 8550 | 0.0675 | - |
|
344 |
+
| 0.0127 | 8600 | 0.0067 | - |
|
345 |
+
| 0.0128 | 8650 | 0.0087 | - |
|
346 |
+
| 0.0129 | 8700 | 0.0028 | - |
|
347 |
+
| 0.0130 | 8750 | 0.0626 | - |
|
348 |
+
| 0.0130 | 8800 | 0.0563 | - |
|
349 |
+
| 0.0131 | 8850 | 0.0012 | - |
|
350 |
+
| 0.0132 | 8900 | 0.0067 | - |
|
351 |
+
| 0.0133 | 8950 | 0.0011 | - |
|
352 |
+
| 0.0133 | 9000 | 0.0105 | 0.189 |
|
353 |
+
| 0.0134 | 9050 | 0.101 | - |
|
354 |
+
| 0.0135 | 9100 | 0.1162 | - |
|
355 |
+
| 0.0136 | 9150 | 0.0593 | - |
|
356 |
+
| 0.0136 | 9200 | 0.0004 | - |
|
357 |
+
| 0.0137 | 9250 | 0.0012 | - |
|
358 |
+
| 0.0138 | 9300 | 0.0022 | - |
|
359 |
+
| 0.0139 | 9350 | 0.0033 | - |
|
360 |
+
| 0.0139 | 9400 | 0.0025 | - |
|
361 |
+
| 0.0140 | 9450 | 0.0578 | - |
|
362 |
+
| 0.0141 | 9500 | 0.0012 | 0.1967 |
|
363 |
|
364 |
* The bold row denotes the saved checkpoint.
|
365 |
### Framework Versions
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "models/
|
3 |
"_num_labels": 5,
|
4 |
"architectures": [
|
5 |
"BertModel"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "models/step_7000/",
|
3 |
"_num_labels": 5,
|
4 |
"architectures": [
|
5 |
"BertModel"
|
config_setfit.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
|
|
|
|
2 |
"labels": [
|
3 |
"no aspect",
|
4 |
"aspect"
|
5 |
],
|
6 |
-
"spacy_model": "id_core_news_trf",
|
7 |
-
"span_context": 0,
|
8 |
"normalize_embeddings": false
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"span_context": 0,
|
3 |
+
"spacy_model": "id_core_news_trf",
|
4 |
"labels": [
|
5 |
"no aspect",
|
6 |
"aspect"
|
7 |
],
|
|
|
|
|
8 |
"normalize_embeddings": false
|
9 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 497787752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b29233c2bea6ca2fe88b694613d04013b0b67623a2dbf4494aee27ac45ff818b
|
3 |
size 497787752
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6991
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74777165396345dcca555ac0cb5187b2cedef4dd6bc091916cc1be89543210a9
|
3 |
size 6991
|