upload weight and config file
Browse files
yolox_tiny_8x8_300e_coco.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
optimizer = dict(
|
2 |
+
type="SGD",
|
3 |
+
lr=0.01,
|
4 |
+
momentum=0.9,
|
5 |
+
weight_decay=0.0005,
|
6 |
+
nesterov=True,
|
7 |
+
paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0),
|
8 |
+
)
|
9 |
+
optimizer_config = dict(grad_clip=None)
|
10 |
+
lr_config = dict(
|
11 |
+
policy="YOLOX",
|
12 |
+
warmup="exp",
|
13 |
+
by_epoch=False,
|
14 |
+
warmup_by_epoch=True,
|
15 |
+
warmup_ratio=1,
|
16 |
+
warmup_iters=5,
|
17 |
+
num_last_epochs=15,
|
18 |
+
min_lr_ratio=0.05,
|
19 |
+
)
|
20 |
+
runner = dict(type="EpochBasedRunner", max_epochs=300)
|
21 |
+
checkpoint_config = dict(interval=10)
|
22 |
+
log_config = dict(interval=50, hooks=[dict(type="TextLoggerHook")])
|
23 |
+
custom_hooks = [
|
24 |
+
dict(type="YOLOXModeSwitchHook", num_last_epochs=15, priority=48),
|
25 |
+
dict(type="SyncNormHook", num_last_epochs=15, interval=10, priority=48),
|
26 |
+
dict(type="ExpMomentumEMAHook", resume_from=None, momentum=0.0001, priority=49),
|
27 |
+
]
|
28 |
+
dist_params = dict(backend="nccl")
|
29 |
+
log_level = "INFO"
|
30 |
+
load_from = None
|
31 |
+
resume_from = None
|
32 |
+
workflow = [("train", 1)]
|
33 |
+
img_scale = (640, 640)
|
34 |
+
model = dict(
|
35 |
+
type="YOLOX",
|
36 |
+
input_size=(640, 640),
|
37 |
+
random_size_range=(10, 20),
|
38 |
+
random_size_interval=10,
|
39 |
+
backbone=dict(type="CSPDarknet", deepen_factor=0.33, widen_factor=0.375),
|
40 |
+
neck=dict(type="YOLOXPAFPN", in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1),
|
41 |
+
bbox_head=dict(type="YOLOXHead", num_classes=80, in_channels=96, feat_channels=96),
|
42 |
+
train_cfg=dict(assigner=dict(type="SimOTAAssigner", center_radius=2.5)),
|
43 |
+
test_cfg=dict(score_thr=0.01, nms=dict(type="nms", iou_threshold=0.65)),
|
44 |
+
)
|
45 |
+
data_root = "data/coco/"
|
46 |
+
dataset_type = "CocoDataset"
|
47 |
+
train_pipeline = [
|
48 |
+
dict(type="Mosaic", img_scale=(640, 640), pad_val=114.0),
|
49 |
+
dict(type="RandomAffine", scaling_ratio_range=(0.5, 1.5), border=(-320, -320)),
|
50 |
+
dict(type="YOLOXHSVRandomAug"),
|
51 |
+
dict(type="RandomFlip", flip_ratio=0.5),
|
52 |
+
dict(type="Resize", img_scale=(640, 640), keep_ratio=True),
|
53 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
54 |
+
dict(type="FilterAnnotations", min_gt_bbox_wh=(1, 1), keep_empty=False),
|
55 |
+
dict(type="DefaultFormatBundle"),
|
56 |
+
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]),
|
57 |
+
]
|
58 |
+
train_dataset = dict(
|
59 |
+
type="MultiImageMixDataset",
|
60 |
+
dataset=dict(
|
61 |
+
type="CocoDataset",
|
62 |
+
ann_file="data/coco/annotations/instances_train2017.json",
|
63 |
+
img_prefix="data/coco/train2017/",
|
64 |
+
pipeline=[dict(type="LoadImageFromFile"), dict(type="LoadAnnotations", with_bbox=True)],
|
65 |
+
filter_empty_gt=False,
|
66 |
+
),
|
67 |
+
pipeline=[
|
68 |
+
dict(type="Mosaic", img_scale=(640, 640), pad_val=114.0),
|
69 |
+
dict(type="RandomAffine", scaling_ratio_range=(0.5, 1.5), border=(-320, -320)),
|
70 |
+
dict(type="YOLOXHSVRandomAug"),
|
71 |
+
dict(type="RandomFlip", flip_ratio=0.5),
|
72 |
+
dict(type="Resize", img_scale=(640, 640), keep_ratio=True),
|
73 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
74 |
+
dict(type="FilterAnnotations", min_gt_bbox_wh=(1, 1), keep_empty=False),
|
75 |
+
dict(type="DefaultFormatBundle"),
|
76 |
+
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]),
|
77 |
+
],
|
78 |
+
)
|
79 |
+
test_pipeline = [
|
80 |
+
dict(type="LoadImageFromFile"),
|
81 |
+
dict(
|
82 |
+
type="MultiScaleFlipAug",
|
83 |
+
img_scale=(416, 416),
|
84 |
+
flip=False,
|
85 |
+
transforms=[
|
86 |
+
dict(type="Resize", keep_ratio=True),
|
87 |
+
dict(type="RandomFlip"),
|
88 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
89 |
+
dict(type="DefaultFormatBundle"),
|
90 |
+
dict(type="Collect", keys=["img"]),
|
91 |
+
],
|
92 |
+
),
|
93 |
+
]
|
94 |
+
data = dict(
|
95 |
+
samples_per_gpu=8,
|
96 |
+
workers_per_gpu=4,
|
97 |
+
persistent_workers=True,
|
98 |
+
train=dict(
|
99 |
+
type="MultiImageMixDataset",
|
100 |
+
dataset=dict(
|
101 |
+
type="CocoDataset",
|
102 |
+
ann_file="data/coco/annotations/instances_train2017.json",
|
103 |
+
img_prefix="data/coco/train2017/",
|
104 |
+
pipeline=[dict(type="LoadImageFromFile"), dict(type="LoadAnnotations", with_bbox=True)],
|
105 |
+
filter_empty_gt=False,
|
106 |
+
),
|
107 |
+
pipeline=[
|
108 |
+
dict(type="Mosaic", img_scale=(640, 640), pad_val=114.0),
|
109 |
+
dict(type="RandomAffine", scaling_ratio_range=(0.5, 1.5), border=(-320, -320)),
|
110 |
+
dict(type="YOLOXHSVRandomAug"),
|
111 |
+
dict(type="RandomFlip", flip_ratio=0.5),
|
112 |
+
dict(type="Resize", img_scale=(640, 640), keep_ratio=True),
|
113 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
114 |
+
dict(type="FilterAnnotations", min_gt_bbox_wh=(1, 1), keep_empty=False),
|
115 |
+
dict(type="DefaultFormatBundle"),
|
116 |
+
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels"]),
|
117 |
+
],
|
118 |
+
),
|
119 |
+
val=dict(
|
120 |
+
type="CocoDataset",
|
121 |
+
ann_file="data/coco/annotations/instances_val2017.json",
|
122 |
+
img_prefix="data/coco/val2017/",
|
123 |
+
pipeline=[
|
124 |
+
dict(type="LoadImageFromFile"),
|
125 |
+
dict(
|
126 |
+
type="MultiScaleFlipAug",
|
127 |
+
img_scale=(416, 416),
|
128 |
+
flip=False,
|
129 |
+
transforms=[
|
130 |
+
dict(type="Resize", keep_ratio=True),
|
131 |
+
dict(type="RandomFlip"),
|
132 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
133 |
+
dict(type="DefaultFormatBundle"),
|
134 |
+
dict(type="Collect", keys=["img"]),
|
135 |
+
],
|
136 |
+
),
|
137 |
+
],
|
138 |
+
),
|
139 |
+
test=dict(
|
140 |
+
type="CocoDataset",
|
141 |
+
ann_file="data/coco/annotations/instances_val2017.json",
|
142 |
+
img_prefix="data/coco/val2017/",
|
143 |
+
pipeline=[
|
144 |
+
dict(type="LoadImageFromFile"),
|
145 |
+
dict(
|
146 |
+
type="MultiScaleFlipAug",
|
147 |
+
img_scale=(416, 416),
|
148 |
+
flip=False,
|
149 |
+
transforms=[
|
150 |
+
dict(type="Resize", keep_ratio=True),
|
151 |
+
dict(type="RandomFlip"),
|
152 |
+
dict(type="Pad", pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))),
|
153 |
+
dict(type="DefaultFormatBundle"),
|
154 |
+
dict(type="Collect", keys=["img"]),
|
155 |
+
],
|
156 |
+
),
|
157 |
+
],
|
158 |
+
),
|
159 |
+
)
|
160 |
+
max_epochs = 300
|
161 |
+
num_last_epochs = 15
|
162 |
+
interval = 10
|
163 |
+
evaluation = dict(save_best="auto", interval=10, dynamic_intervals=[(285, 1)], metric="bbox")
|
yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b40479060a02f93ea12f872ec984f583f1c2a5e899f3e5c876b78b78d0391a0a
|
3 |
+
size 20404656
|