fakezeta commited on
Commit
d0d8c4b
1 Parent(s): 92516b1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - conversational
7
+ base_model: google/gemma-2-9b
8
+ ---
9
+
10
+ # OpenVINO IR model with int8 quantization
11
+
12
+ Model definition for LocalAI:
13
+ ```
14
+ name: gemma-2-9b-it
15
+ backend: transformers
16
+ parameters:
17
+ model: fakezeta/gemma-2-9b-it-ov-int8
18
+ context_size: 8192
19
+ type: OVModelForCausalLM
20
+ template:
21
+ use_tokenizer_template: true
22
+ ```
23
+
24
+ To run the model directly with LocalAI:
25
+ ```
26
+ local-ai run huggingface://fakezeta/gemma-2-9b-it-ov-int8/model.yaml
27
+ ```
28
+
29
+ # Gemma 2 model card
30
+
31
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
32
+
33
+ **Resources and Technical Documentation**:
34
+
35
+ * [Responsible Generative AI Toolkit][rai-toolkit]
36
+ * [Gemma on Kaggle][kaggle-gemma]
37
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma]
38
+
39
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)
40
+
41
+ **Authors**: Google
42
+
43
+ ## Model Information
44
+
45
+ Summary description and brief definition of inputs and outputs.
46
+
47
+ ### Description
48
+
49
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
50
+ built from the same research and technology used to create the Gemini models.
51
+ They are text-to-text, decoder-only large language models, available in English,
52
+ with open weights for both pre-trained variants and instruction-tuned variants.
53
+ Gemma models are well-suited for a variety of text generation tasks, including
54
+ question answering, summarization, and reasoning. Their relatively small size
55
+ makes it possible to deploy them in environments with limited resources such as
56
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
57
+ state of the art AI models and helping foster innovation for everyone.
58
+
59
+ ### Usage
60
+
61
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
62
+ ```sh
63
+ pip install -U transformers
64
+ ```
65
+
66
+ Then, copy the snippet from the section that is relevant for your usecase.
67
+
68
+ #### Running with the `pipeline` API
69
+
70
+ ```python
71
+ import torch
72
+ from transformers import pipeline
73
+
74
+ pipe = pipeline(
75
+ "text-generation",
76
+ model="google/gemma-2-9b-it",
77
+ model_kwargs={"torch_dtype": torch.bfloat16},
78
+ device="cuda", # replace with "mps" to run on a Mac device
79
+ )
80
+
81
+ messages = [
82
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
83
+ ]
84
+
85
+ outputs = pipe(messages, max_new_tokens=256)
86
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
87
+ print(assistant_response)
88
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
89
+ ```
90
+
91
+ #### Running the model on a single / multi GPU
92
+
93
+ ```python
94
+ # pip install accelerate
95
+ from transformers import AutoTokenizer, AutoModelForCausalLM
96
+ import torch
97
+
98
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
99
+ model = AutoModelForCausalLM.from_pretrained(
100
+ "google/gemma-2-9b-it",
101
+ device_map="auto",
102
+ torch_dtype=torch.bfloat16,
103
+ )
104
+
105
+ input_text = "Write me a poem about Machine Learning."
106
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
107
+
108
+ outputs = model.generate(**input_ids, max_new_tokens=32)
109
+ print(tokenizer.decode(outputs[0]))
110
+ ```
111
+
112
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
113
+ ```python
114
+ messages = [
115
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
116
+ ]
117
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
118
+
119
+ outputs = model.generate(**input_ids, max_new_tokens=256)
120
+ print(tokenizer.decode(outputs[0]))
121
+ ```
122
+
123
+ <a name="precisions"></a>
124
+ #### Running the model on a GPU using different precisions
125
+
126
+ The native weights of this model were exported in `bfloat16` precision.
127
+
128
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
129
+
130
+ * _Upcasting to `torch.float32`_
131
+
132
+ ```python
133
+ # pip install accelerate
134
+ from transformers import AutoTokenizer, AutoModelForCausalLM
135
+
136
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
137
+ model = AutoModelForCausalLM.from_pretrained(
138
+ "google/gemma-2-9b-it",
139
+ device_map="auto",
140
+ )
141
+
142
+ input_text = "Write me a poem about Machine Learning."
143
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
144
+
145
+ outputs = model.generate(**input_ids, max_new_tokens=32)
146
+ print(tokenizer.decode(outputs[0]))
147
+ ```
148
+
149
+ #### Running the model through a CLI
150
+
151
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
152
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
153
+ for getting started, then launch the CLI through the following command:
154
+
155
+ ```shell
156
+ local-gemma --model 9b --preset speed
157
+ ```
158
+
159
+ #### Quantized Versions through `bitsandbytes`
160
+
161
+ <details>
162
+ <summary>
163
+ Using 8-bit precision (int8)
164
+ </summary>
165
+
166
+ ```python
167
+ # pip install bitsandbytes accelerate
168
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
169
+
170
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
171
+
172
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
173
+ model = AutoModelForCausalLM.from_pretrained(
174
+ "google/gemma-2-9b-it",
175
+ quantization_config=quantization_config,
176
+ )
177
+
178
+ input_text = "Write me a poem about Machine Learning."
179
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
180
+
181
+ outputs = model.generate(**input_ids, max_new_tokens=32)
182
+ print(tokenizer.decode(outputs[0]))
183
+ ```
184
+ </details>
185
+
186
+ <details>
187
+ <summary>
188
+ Using 4-bit precision
189
+ </summary>
190
+
191
+ ```python
192
+ # pip install bitsandbytes accelerate
193
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
194
+
195
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
196
+
197
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
198
+ model = AutoModelForCausalLM.from_pretrained(
199
+ "google/gemma-2-9b-it",
200
+ quantization_config=quantization_config,
201
+ )
202
+
203
+ input_text = "Write me a poem about Machine Learning."
204
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
205
+
206
+ outputs = model.generate(**input_ids, max_new_tokens=32)
207
+ print(tokenizer.decode(outputs[0]))
208
+ ```
209
+ </details>
210
+
211
+ #### Advanced Usage
212
+
213
+ <details>
214
+ <summary>
215
+ Torch compile
216
+ </summary>
217
+
218
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
219
+ inference of PyTorch modules. The Gemma-2 model can be run up to 6x faster by leveraging torch compile.
220
+
221
+ Note that two warm-up steps are required before the full inference speed is realised:
222
+
223
+ ```python
224
+ import os
225
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
226
+
227
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
228
+ from transformers.cache_utils import HybridCache
229
+ import torch
230
+
231
+ torch.set_float32_matmul_precision("high")
232
+
233
+ # load the model + tokenizer
234
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
235
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b-it", torch_dtype=torch.bfloat16)
236
+ model.to("cuda")
237
+
238
+ # apply the torch compile transformation
239
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
240
+
241
+ # pre-process inputs
242
+ input_text = "The theory of special relativity states "
243
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
244
+ prompt_length = model_inputs.input_ids.shape[1]
245
+
246
+ # set-up k/v cache
247
+ past_key_values = HybridCache(
248
+ config=model.config,
249
+ max_batch_size=1,
250
+ max_cache_len=model.config.max_position_embeddings,
251
+ device=model.device,
252
+ dtype=model.dtype
253
+ )
254
+
255
+ # enable passing kv cache to generate
256
+ model._supports_cache_class = True
257
+ model.generation_config.cache_implementation = None
258
+
259
+ # two warm-up steps
260
+ for idx in range(2):
261
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
262
+ past_key_values.reset()
263
+
264
+ # fast run
265
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
266
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
267
+ ```
268
+
269
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
270
+
271
+ </details>
272
+
273
+ ### Chat Template
274
+
275
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
276
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
277
+
278
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
279
+
280
+ ```py
281
+ from transformers import AutoTokenizer, AutoModelForCausalLM
282
+ import transformers
283
+ import torch
284
+
285
+ model_id = "google/gemma-2-9b-it"
286
+ dtype = torch.bfloat16
287
+
288
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
289
+ model = AutoModelForCausalLM.from_pretrained(
290
+ model_id,
291
+ device_map="cuda",
292
+ torch_dtype=dtype,)
293
+
294
+ chat = [
295
+ { "role": "user", "content": "Write a hello world program" },
296
+ ]
297
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
298
+ ```
299
+
300
+ At this point, the prompt contains the following text:
301
+
302
+ ```
303
+ <bos><start_of_turn>user
304
+ Write a hello world program<end_of_turn>
305
+ <start_of_turn>model
306
+ ```
307
+
308
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
309
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
310
+ the `<end_of_turn>` token.
311
+
312
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
313
+ chat template.
314
+
315
+ After the prompt is ready, generation can be performed like this:
316
+
317
+ ```py
318
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
319
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
320
+ print(tokenizer.decode(outputs[0]))
321
+ ```
322
+
323
+ ### Inputs and outputs
324
+
325
+ * **Input:** Text string, such as a question, a prompt, or a document to be
326
+ summarized.
327
+ * **Output:** Generated English-language text in response to the input, such
328
+ as an answer to a question, or a summary of a document.
329
+
330
+ ### Citation
331
+
332
+ ```none
333
+ @article{gemma_2024,
334
+ title={Gemma},
335
+ url={https://www.kaggle.com/m/3301},
336
+ DOI={10.34740/KAGGLE/M/3301},
337
+ publisher={Kaggle},
338
+ author={Gemma Team},
339
+ year={2024}
340
+ }
341
+ ```
342
+
343
+ ## Model Data
344
+
345
+ Data used for model training and how the data was processed.
346
+
347
+ ### Training Dataset
348
+
349
+ These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens.
350
+ Here are the key components:
351
+
352
+ * Web Documents: A diverse collection of web text ensures the model is exposed
353
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
354
+ English-language content.
355
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
356
+ programming languages, which improves its ability to generate code or
357
+ understand code-related questions.
358
+ * Mathematics: Training on mathematical text helps the model learn logical
359
+ reasoning, symbolic representation, and to address mathematical queries.
360
+
361
+ The combination of these diverse data sources is crucial for training a powerful
362
+ language model that can handle a wide variety of different tasks and text
363
+ formats.
364
+
365
+ ### Data Preprocessing
366
+
367
+ Here are the key data cleaning and filtering methods applied to the training
368
+ data:
369
+
370
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
371
+ applied at multiple stages in the data preparation process to ensure the
372
+ exclusion of harmful and illegal content.
373
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
374
+ reliable, automated techniques were used to filter out certain personal
375
+ information and other sensitive data from training sets.
376
+ * Additional methods: Filtering based on content quality and safety in line with
377
+ [our policies][safety-policies].
378
+
379
+ ## Implementation Information
380
+
381
+ Details about the model internals.
382
+
383
+ ### Hardware
384
+
385
+ Gemma was trained using the latest generation of
386
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
387
+
388
+ Training large language models requires significant computational power. TPUs,
389
+ designed specifically for matrix operations common in machine learning, offer
390
+ several advantages in this domain:
391
+
392
+ * Performance: TPUs are specifically designed to handle the massive computations
393
+ involved in training LLMs. They can speed up training considerably compared to
394
+ CPUs.
395
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
396
+ for the handling of large models and batch sizes during training. This can
397
+ lead to better model quality.
398
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
399
+ handling the growing complexity of large foundation models. You can distribute
400
+ training across multiple TPU devices for faster and more efficient processing.
401
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
402
+ solution for training large models compared to CPU-based infrastructure,
403
+ especially when considering the time and resources saved due to faster
404
+ training.
405
+ * These advantages are aligned with
406
+ [Google's commitments to operate sustainably][sustainability].
407
+
408
+ ### Software
409
+
410
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
411
+
412
+ JAX allows researchers to take advantage of the latest generation of hardware,
413
+ including TPUs, for faster and more efficient training of large models.
414
+
415
+ ML Pathways is Google's latest effort to build artificially intelligent systems
416
+ capable of generalizing across multiple tasks. This is specially suitable for
417
+ [foundation models][foundation-models], including large language models like
418
+ these ones.
419
+
420
+ Together, JAX and ML Pathways are used as described in the
421
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
422
+ controller' programming model of Jax and Pathways allows a single Python
423
+ process to orchestrate the entire training run, dramatically simplifying the
424
+ development workflow."
425
+
426
+ ## Evaluation
427
+
428
+ Model evaluation metrics and results.
429
+
430
+ ### Benchmark Results
431
+
432
+ These models were evaluated against a large collection of different datasets and
433
+ metrics to cover different aspects of text generation:
434
+
435
+ | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B |
436
+ | ------------------------------ | ------------- | ----------- | ------------ |
437
+ | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 |
438
+ | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 |
439
+ | [PIQA][piqa] | 0-shot | 81.7 | 83.2 |
440
+ | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 |
441
+ | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 |
442
+ | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 |
443
+ | [ARC-e][arc] | 0-shot | 88.0 | 88.6 |
444
+ | [ARC-c][arc] | 25-shot | 68.4 | 71.4 |
445
+ | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 |
446
+ | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 |
447
+ | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 |
448
+ | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 |
449
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 |
450
+ | [MATH][math] | 4-shot | 36.6 | 42.3 |
451
+ | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 |
452
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 |
453
+ | ------------------------------ | ------------- | ----------- | ------------ |
454
+
455
+ ## Ethics and Safety
456
+
457
+ Ethics and safety evaluation approach and results.
458
+
459
+ ### Evaluation Approach
460
+
461
+ Our evaluation methods include structured evaluations and internal red-teaming
462
+ testing of relevant content policies. Red-teaming was conducted by a number of
463
+ different teams, each with different goals and human evaluation metrics. These
464
+ models were evaluated against a number of different categories relevant to
465
+ ethics and safety, including:
466
+
467
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
468
+ policies including child sexual abuse and exploitation, harassment, violence
469
+ and gore, and hate speech.
470
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
471
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
472
+ * Memorization: Automated evaluation of memorization of training data, including
473
+ the risk of personally identifiable information exposure.
474
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
475
+ biological, radiological, and nuclear (CBRN) risks.
476
+
477
+ ### Evaluation Results
478
+
479
+ The results of ethics and safety evaluations are within acceptable thresholds
480
+ for meeting [internal policies][safety-policies] for categories such as child
481
+ safety, content safety, representational harms, memorization, large-scale harms.
482
+ On top of robust internal evaluations, the results of well-known safety
483
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
484
+ are shown here.
485
+
486
+ #### Gemma 2.0
487
+
488
+ | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B |
489
+ | ------------------------ | ------------- | --------------- | ---------------- |
490
+ | [RealToxicity][realtox] | average | 8.25 | 8.84 |
491
+ | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 |
492
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 |
493
+ | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 |
494
+ | [Winogender][winogender] | top-1 | 79.17 | 77.22 |
495
+ | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 |
496
+ | [Winobias 1_2][winobias] | | 78.09 | 81.94 |
497
+ | [Winobias 2_2][winobias] | | 95.32 | 97.22 |
498
+ | [Toxigen][toxigen] | | 39.30 | 38.42 |
499
+ | ------------------------ | ------------- | --------------- | ---------------- |
500
+
501
+ ## Usage and Limitations
502
+
503
+ These models have certain limitations that users should be aware of.
504
+
505
+ ### Intended Usage
506
+
507
+ Open Large Language Models (LLMs) have a wide range of applications across
508
+ various industries and domains. The following list of potential uses is not
509
+ comprehensive. The purpose of this list is to provide contextual information
510
+ about the possible use-cases that the model creators considered as part of model
511
+ training and development.
512
+
513
+ * Content Creation and Communication
514
+ * Text Generation: These models can be used to generate creative text formats
515
+ such as poems, scripts, code, marketing copy, and email drafts.
516
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
517
+ service, virtual assistants, or interactive applications.
518
+ * Text Summarization: Generate concise summaries of a text corpus, research
519
+ papers, or reports.
520
+ * Research and Education
521
+ * Natural Language Processing (NLP) Research: These models can serve as a
522
+ foundation for researchers to experiment with NLP techniques, develop
523
+ algorithms, and contribute to the advancement of the field.
524
+ * Language Learning Tools: Support interactive language learning experiences,
525
+ aiding in grammar correction or providing writing practice.
526
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
527
+ by generating summaries or answering questions about specific topics.
528
+
529
+ ### Limitations
530
+
531
+ * Training Data
532
+ * The quality and diversity of the training data significantly influence the
533
+ model's capabilities. Biases or gaps in the training data can lead to
534
+ limitations in the model's responses.
535
+ * The scope of the training dataset determines the subject areas the model can
536
+ handle effectively.
537
+ * Context and Task Complexity
538
+ * LLMs are better at tasks that can be framed with clear prompts and
539
+ instructions. Open-ended or highly complex tasks might be challenging.
540
+ * A model's performance can be influenced by the amount of context provided
541
+ (longer context generally leads to better outputs, up to a certain point).
542
+ * Language Ambiguity and Nuance
543
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
544
+ nuances, sarcasm, or figurative language.
545
+ * Factual Accuracy
546
+ * LLMs generate responses based on information they learned from their
547
+ training datasets, but they are not knowledge bases. They may generate
548
+ incorrect or outdated factual statements.
549
+ * Common Sense
550
+ * LLMs rely on statistical patterns in language. They might lack the ability
551
+ to apply common sense reasoning in certain situations.
552
+
553
+ ### Ethical Considerations and Risks
554
+
555
+ The development of large language models (LLMs) raises several ethical concerns.
556
+ In creating an open model, we have carefully considered the following:
557
+
558
+ * Bias and Fairness
559
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
560
+ biases embedded in the training material. These models underwent careful
561
+ scrutiny, input data pre-processing described and posterior evaluations
562
+ reported in this card.
563
+ * Misinformation and Misuse
564
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
565
+ * Guidelines are provided for responsible use with the model, see the
566
+ [Responsible Generative AI Toolkit][rai-toolkit].
567
+ * Transparency and Accountability:
568
+ * This model card summarizes details on the models' architecture,
569
+ capabilities, limitations, and evaluation processes.
570
+ * A responsibly developed open model offers the opportunity to share
571
+ innovation by making LLM technology accessible to developers and researchers
572
+ across the AI ecosystem.
573
+
574
+ Risks identified and mitigations:
575
+
576
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
577
+ (using evaluation metrics, human review) and the exploration of de-biasing
578
+ techniques during model training, fine-tuning, and other use cases.
579
+ * Generation of harmful content: Mechanisms and guidelines for content safety
580
+ are essential. Developers are encouraged to exercise caution and implement
581
+ appropriate content safety safeguards based on their specific product policies
582
+ and application use cases.
583
+ * Misuse for malicious purposes: Technical limitations and developer and
584
+ end-user education can help mitigate against malicious applications of LLMs.
585
+ Educational resources and reporting mechanisms for users to flag misuse are
586
+ provided. Prohibited uses of Gemma models are outlined in the
587
+ [Gemma Prohibited Use Policy][prohibited-use].
588
+ * Privacy violations: Models were trained on data filtered for removal of PII
589
+ (Personally Identifiable Information). Developers are encouraged to adhere to
590
+ privacy regulations with privacy-preserving techniques.
591
+
592
+ ### Benefits
593
+
594
+ At the time of release, this family of models provides high-performance open
595
+ large language model implementations designed from the ground up for Responsible
596
+ AI development compared to similarly sized models.
597
+
598
+ Using the benchmark evaluation metrics described in this document, these models
599
+ have shown to provide superior performance to other, comparably-sized open model
600
+ alternatives.
601
+
602
+ [rai-toolkit]: https://ai.google.dev/responsible
603
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
604
+ [terms]: https://ai.google.dev/gemma/terms
605
+ [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335
606
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
607
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
608
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
609
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
610
+ [sustainability]: https://sustainability.google/operating-sustainably/
611
+ [jax]: https://github.com/google/jax
612
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
613
+ [sustainability]: https://sustainability.google/operating-sustainably/
614
+ [foundation-models]: https://ai.google/discover/foundation-models/
615
+ [gemini-2-paper]: https://goo.gle/gemma2report
616
+ [mmlu]: https://arxiv.org/abs/2009.03300
617
+ [hellaswag]: https://arxiv.org/abs/1905.07830
618
+ [piqa]: https://arxiv.org/abs/1911.11641
619
+ [socialiqa]: https://arxiv.org/abs/1904.09728
620
+ [boolq]: https://arxiv.org/abs/1905.10044
621
+ [winogrande]: https://arxiv.org/abs/1907.10641
622
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
623
+ [openbookqa]: https://arxiv.org/abs/1809.02789
624
+ [arc]: https://arxiv.org/abs/1911.01547
625
+ [triviaqa]: https://arxiv.org/abs/1705.03551
626
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
627
+ [humaneval]: https://arxiv.org/abs/2107.03374
628
+ [mbpp]: https://arxiv.org/abs/2108.07732
629
+ [gsm8k]: https://arxiv.org/abs/2110.14168
630
+ [realtox]: https://arxiv.org/abs/2009.11462
631
+ [bold]: https://arxiv.org/abs/2101.11718
632
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
633
+ [bbq]: https://arxiv.org/abs/2110.08193v2
634
+ [winogender]: https://arxiv.org/abs/1804.09301
635
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
636
+ [winobias]: https://arxiv.org/abs/1804.06876
637
+ [math]: https://arxiv.org/abs/2103.03874
638
+ [agieval]: https://arxiv.org/abs/2304.06364
639
+ [big-bench]: https://arxiv.org/abs/2206.04615
640
+ [toxigen]: https://arxiv.org/abs/2203.09509
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/gemma-2-9b-it",
3
+ "architectures": [
4
+ "Gemma2ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": 50.0,
9
+ "bos_token_id": 2,
10
+ "cache_implementation": "hybrid",
11
+ "eos_token_id": 1,
12
+ "final_logit_softcapping": 30.0,
13
+ "head_dim": 256,
14
+ "hidden_act": "gelu_pytorch_tanh",
15
+ "hidden_activation": "gelu_pytorch_tanh",
16
+ "hidden_size": 3584,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "gemma2",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_layers": 42,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 0,
25
+ "query_pre_attn_scalar": 256,
26
+ "rms_norm_eps": 1e-06,
27
+ "rope_theta": 10000.0,
28
+ "sliding_window": 4096,
29
+ "sliding_window_size": 4096,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.44.2",
32
+ "use_cache": true,
33
+ "vocab_size": 256000
34
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.44.2"
8
+ }
model.yaml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ name: gemma-2-9b-it
2
+ backend: transformers
3
+ parameters:
4
+ model: fakezeta/gemma-2-9b-it-ov-int8
5
+ context_size: 8192
6
+ type: OVModelForCausalLM
7
+ template:
8
+ use_tokenizer_template: true
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd6b48e24299296c6ae555fbd28839cfdbaee2931485631c394eebb5dc24a2d8
3
+ size 4241003
openvino_detokenizer.xml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_312413" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_312413">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Constant_312389" type="Const" version="opset1">
14
+ <data element_type="u8" shape="4241003" offset="0" size="4241003" />
15
+ <output>
16
+ <port id="0" precision="U8">
17
+ <dim>4241003</dim>
18
+ </port>
19
+ </output>
20
+ </layer>
21
+ <layer id="2" name="Convert_312423" type="Convert" version="opset1">
22
+ <data destination_type="i32" />
23
+ <input>
24
+ <port id="0" precision="I64">
25
+ <dim>-1</dim>
26
+ <dim>-1</dim>
27
+ </port>
28
+ </input>
29
+ <output>
30
+ <port id="1" precision="I32">
31
+ <dim>-1</dim>
32
+ <dim>-1</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="SentencepieceDetokenizer_312414" type="SentencepieceDetokenizer" version="extension">
37
+ <input>
38
+ <port id="0" precision="U8">
39
+ <dim>4241003</dim>
40
+ </port>
41
+ <port id="1" precision="I32">
42
+ <dim>-1</dim>
43
+ <dim>-1</dim>
44
+ </port>
45
+ </input>
46
+ <output>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="I32">
51
+ <dim>-1</dim>
52
+ </port>
53
+ <port id="4" precision="U8">
54
+ <dim>-1</dim>
55
+ </port>
56
+ </output>
57
+ </layer>
58
+ <layer id="4" name="StringTensorPack_312415" type="StringTensorPack" version="extension">
59
+ <data mode="begins_ends" />
60
+ <input>
61
+ <port id="0" precision="I32">
62
+ <dim>-1</dim>
63
+ </port>
64
+ <port id="1" precision="I32">
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="2" precision="U8">
68
+ <dim>-1</dim>
69
+ </port>
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="STRING" names="string_output">
73
+ <dim>-1</dim>
74
+ </port>
75
+ </output>
76
+ </layer>
77
+ <layer id="5" name="Result_312416" type="Result" version="opset1">
78
+ <input>
79
+ <port id="0" precision="STRING">
80
+ <dim>-1</dim>
81
+ </port>
82
+ </input>
83
+ </layer>
84
+ </layers>
85
+ <edges>
86
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
87
+ <edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
88
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
89
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="0" />
90
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="1" />
91
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="2" />
92
+ <edge from-layer="4" from-port="3" to-layer="5" to-port="0" />
93
+ </edges>
94
+ <rt_info>
95
+ <bos_token_id value="2" />
96
+ <chat_template value="{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '&lt;start_of_turn>' + role + '&#10;' + message['content'] | trim + '&lt;end_of_turn>&#10;' }}{% endfor %}{% if add_generation_prompt %}{{'&lt;start_of_turn>model&#10;'}}{% endif %}" />
97
+ <eos_token_id value="1" />
98
+ <original_tokenizer_class value="&lt;class 'transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast'>" />
99
+ <pad_token_id value="0" />
100
+ </rt_info>
101
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7328397340dcfe0c0d275458b3e17fd0a350e8e9196afc62d38b1642760f914
3
+ size 9249839918
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6968f4fa312d9a1c06b1e247563de545661ed4b516bbab33fb2bb50a4aa604e
3
+ size 4241019
openvino_tokenizer.xml ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="string_input" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="string_input">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_312392" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_312388" type="Const" version="opset1">
19
+ <data element_type="u8" shape="4241003" offset="4" size="4241003" />
20
+ <output>
21
+ <port id="0" precision="U8">
22
+ <dim>4241003</dim>
23
+ </port>
24
+ </output>
25
+ </layer>
26
+ <layer id="3" name="SentencepieceTokenizer_312391" type="SentencepieceTokenizer" version="extension">
27
+ <data nbest_size="0" alpha="0" add_bos="true" add_eos="false" reverse="true" />
28
+ <input>
29
+ <port id="0" precision="U8">
30
+ <dim>4241003</dim>
31
+ </port>
32
+ <port id="1" precision="STRING">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </input>
36
+ <output>
37
+ <port id="2" precision="I64">
38
+ <dim>-1</dim>
39
+ <dim>2</dim>
40
+ </port>
41
+ <port id="3" precision="I32">
42
+ <dim>-1</dim>
43
+ </port>
44
+ <port id="4" precision="I64">
45
+ <dim>2</dim>
46
+ </port>
47
+ </output>
48
+ </layer>
49
+ <layer id="4" name="Broadcast_312393" type="Broadcast" version="opset3">
50
+ <data mode="numpy" />
51
+ <input>
52
+ <port id="0" precision="I32" />
53
+ <port id="1" precision="I64">
54
+ <dim>2</dim>
55
+ </port>
56
+ </input>
57
+ <output>
58
+ <port id="2" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ </output>
63
+ </layer>
64
+ <layer id="5" name="Constant_312394" type="Const" version="opset1">
65
+ <data element_type="i32" shape="" offset="4241007" size="4" />
66
+ <output>
67
+ <port id="0" precision="I32" />
68
+ </output>
69
+ </layer>
70
+ <layer id="6" name="ShapeOf_312395" type="ShapeOf" version="opset3">
71
+ <data output_type="i64" />
72
+ <input>
73
+ <port id="0" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ </input>
77
+ <output>
78
+ <port id="1" precision="I64">
79
+ <dim>1</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="7" name="Broadcast_312396" type="Broadcast" version="opset3">
84
+ <data mode="numpy" />
85
+ <input>
86
+ <port id="0" precision="I32" />
87
+ <port id="1" precision="I64">
88
+ <dim>1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="2" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ </output>
96
+ </layer>
97
+ <layer id="8" name="ScatterNDUpdate_312400" type="ScatterNDUpdate" version="opset4">
98
+ <input>
99
+ <port id="0" precision="I32">
100
+ <dim>-1</dim>
101
+ <dim>-1</dim>
102
+ </port>
103
+ <port id="1" precision="I64">
104
+ <dim>-1</dim>
105
+ <dim>2</dim>
106
+ </port>
107
+ <port id="2" precision="I32">
108
+ <dim>-1</dim>
109
+ </port>
110
+ </input>
111
+ <output>
112
+ <port id="3" precision="I32">
113
+ <dim>-1</dim>
114
+ <dim>-1</dim>
115
+ </port>
116
+ </output>
117
+ </layer>
118
+ <layer id="9" name="Constant_312404" type="Const" version="opset1">
119
+ <data element_type="i64" shape="1" offset="4241011" size="8" />
120
+ <output>
121
+ <port id="0" precision="I64">
122
+ <dim>1</dim>
123
+ </port>
124
+ </output>
125
+ </layer>
126
+ <layer id="10" name="Reverse_312405" type="Reverse" version="opset1">
127
+ <data mode="index" />
128
+ <input>
129
+ <port id="0" precision="I32">
130
+ <dim>-1</dim>
131
+ <dim>-1</dim>
132
+ </port>
133
+ <port id="1" precision="I64">
134
+ <dim>1</dim>
135
+ </port>
136
+ </input>
137
+ <output>
138
+ <port id="2" precision="I32">
139
+ <dim>-1</dim>
140
+ <dim>-1</dim>
141
+ </port>
142
+ </output>
143
+ </layer>
144
+ <layer id="11" name="Reverse_312405" type="Convert" version="opset1">
145
+ <data destination_type="i64" />
146
+ <input>
147
+ <port id="0" precision="I32">
148
+ <dim>-1</dim>
149
+ <dim>-1</dim>
150
+ </port>
151
+ </input>
152
+ <output>
153
+ <port id="1" precision="I64" names="attention_mask">
154
+ <dim>-1</dim>
155
+ <dim>-1</dim>
156
+ </port>
157
+ </output>
158
+ </layer>
159
+ <layer id="13" name="Constant_312401" type="Const" version="opset1">
160
+ <data element_type="i32" shape="" offset="0" size="4" />
161
+ <output>
162
+ <port id="0" precision="I32" />
163
+ </output>
164
+ </layer>
165
+ <layer id="14" name="Broadcast_312402" type="Broadcast" version="opset3">
166
+ <data mode="bidirectional" />
167
+ <input>
168
+ <port id="0" precision="I32" />
169
+ <port id="1" precision="I64">
170
+ <dim>2</dim>
171
+ </port>
172
+ </input>
173
+ <output>
174
+ <port id="2" precision="I32">
175
+ <dim>-1</dim>
176
+ <dim>-1</dim>
177
+ </port>
178
+ </output>
179
+ </layer>
180
+ <layer id="15" name="ScatterNDUpdate_312403" type="ScatterNDUpdate" version="opset4">
181
+ <input>
182
+ <port id="0" precision="I32">
183
+ <dim>-1</dim>
184
+ <dim>-1</dim>
185
+ </port>
186
+ <port id="1" precision="I64">
187
+ <dim>-1</dim>
188
+ <dim>2</dim>
189
+ </port>
190
+ <port id="2" precision="I32">
191
+ <dim>-1</dim>
192
+ </port>
193
+ </input>
194
+ <output>
195
+ <port id="3" precision="I32">
196
+ <dim>-1</dim>
197
+ <dim>-1</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="16" name="Constant_312406" type="Const" version="opset1">
202
+ <data element_type="i64" shape="1" offset="4241011" size="8" />
203
+ <output>
204
+ <port id="0" precision="I64">
205
+ <dim>1</dim>
206
+ </port>
207
+ </output>
208
+ </layer>
209
+ <layer id="17" name="Reverse_312407" type="Reverse" version="opset1">
210
+ <data mode="index" />
211
+ <input>
212
+ <port id="0" precision="I32">
213
+ <dim>-1</dim>
214
+ <dim>-1</dim>
215
+ </port>
216
+ <port id="1" precision="I64">
217
+ <dim>1</dim>
218
+ </port>
219
+ </input>
220
+ <output>
221
+ <port id="2" precision="I32">
222
+ <dim>-1</dim>
223
+ <dim>-1</dim>
224
+ </port>
225
+ </output>
226
+ </layer>
227
+ <layer id="18" name="Reverse_312407" type="Convert" version="opset1">
228
+ <data destination_type="i64" />
229
+ <input>
230
+ <port id="0" precision="I32">
231
+ <dim>-1</dim>
232
+ <dim>-1</dim>
233
+ </port>
234
+ </input>
235
+ <output>
236
+ <port id="1" precision="I64" names="input_ids">
237
+ <dim>-1</dim>
238
+ <dim>-1</dim>
239
+ </port>
240
+ </output>
241
+ </layer>
242
+ <layer id="19" name="Result_312408" type="Result" version="opset1">
243
+ <input>
244
+ <port id="0" precision="I64">
245
+ <dim>-1</dim>
246
+ <dim>-1</dim>
247
+ </port>
248
+ </input>
249
+ </layer>
250
+ <layer id="12" name="Result_312409" type="Result" version="opset1">
251
+ <input>
252
+ <port id="0" precision="I64">
253
+ <dim>-1</dim>
254
+ <dim>-1</dim>
255
+ </port>
256
+ </input>
257
+ </layer>
258
+ </layers>
259
+ <edges>
260
+ <edge from-layer="0" from-port="0" to-layer="3" to-port="1" />
261
+ <edge from-layer="1" from-port="0" to-layer="4" to-port="0" />
262
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
263
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="1" />
264
+ <edge from-layer="3" from-port="3" to-layer="6" to-port="0" />
265
+ <edge from-layer="3" from-port="2" to-layer="8" to-port="1" />
266
+ <edge from-layer="3" from-port="3" to-layer="15" to-port="2" />
267
+ <edge from-layer="3" from-port="2" to-layer="15" to-port="1" />
268
+ <edge from-layer="3" from-port="4" to-layer="14" to-port="1" />
269
+ <edge from-layer="4" from-port="2" to-layer="8" to-port="0" />
270
+ <edge from-layer="5" from-port="0" to-layer="7" to-port="0" />
271
+ <edge from-layer="6" from-port="1" to-layer="7" to-port="1" />
272
+ <edge from-layer="7" from-port="2" to-layer="8" to-port="2" />
273
+ <edge from-layer="8" from-port="3" to-layer="10" to-port="0" />
274
+ <edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
275
+ <edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
276
+ <edge from-layer="11" from-port="1" to-layer="12" to-port="0" />
277
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="0" />
278
+ <edge from-layer="14" from-port="2" to-layer="15" to-port="0" />
279
+ <edge from-layer="15" from-port="3" to-layer="17" to-port="0" />
280
+ <edge from-layer="16" from-port="0" to-layer="17" to-port="1" />
281
+ <edge from-layer="17" from-port="2" to-layer="18" to-port="0" />
282
+ <edge from-layer="18" from-port="1" to-layer="19" to-port="0" />
283
+ </edges>
284
+ <rt_info>
285
+ <bos_token_id value="2" />
286
+ <chat_template value="{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '&lt;start_of_turn>' + role + '&#10;' + message['content'] | trim + '&lt;end_of_turn>&#10;' }}{% endfor %}{% if add_generation_prompt %}{{'&lt;start_of_turn>model&#10;'}}{% endif %}" />
287
+ <eos_token_id value="1" />
288
+ <original_tokenizer_class value="&lt;class 'transformers.models.gemma.tokenization_gemma_fast.GemmaTokenizerFast'>" />
289
+ <pad_token_id value="0" />
290
+ </rt_info>
291
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
3
+ size 17525357
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json ADDED
@@ -0,0 +1,2013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "255968": {
1742
+ "content": "[toxicity=0]",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": false
1748
+ },
1749
+ "255969": {
1750
+ "content": "\t\t",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": false
1756
+ },
1757
+ "255970": {
1758
+ "content": "\t\t\t",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": false
1764
+ },
1765
+ "255971": {
1766
+ "content": "\t\t\t\t",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": false
1772
+ },
1773
+ "255972": {
1774
+ "content": "\t\t\t\t\t",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": false
1780
+ },
1781
+ "255973": {
1782
+ "content": "\t\t\t\t\t\t",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": false
1788
+ },
1789
+ "255974": {
1790
+ "content": "\t\t\t\t\t\t\t",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": false
1796
+ },
1797
+ "255975": {
1798
+ "content": "\t\t\t\t\t\t\t\t",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": false
1804
+ },
1805
+ "255976": {
1806
+ "content": "\t\t\t\t\t\t\t\t\t",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": false
1812
+ },
1813
+ "255977": {
1814
+ "content": "\t\t\t\t\t\t\t\t\t\t",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": false
1820
+ },
1821
+ "255978": {
1822
+ "content": "\t\t\t\t\t\t\t\t\t\t\t",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": false
1828
+ },
1829
+ "255979": {
1830
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": false
1836
+ },
1837
+ "255980": {
1838
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": false
1844
+ },
1845
+ "255981": {
1846
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": false
1852
+ },
1853
+ "255982": {
1854
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": false
1860
+ },
1861
+ "255983": {
1862
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": false
1868
+ },
1869
+ "255984": {
1870
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": false
1876
+ },
1877
+ "255985": {
1878
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": false
1884
+ },
1885
+ "255986": {
1886
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": false
1892
+ },
1893
+ "255987": {
1894
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": false
1900
+ },
1901
+ "255988": {
1902
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": false
1908
+ },
1909
+ "255989": {
1910
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": false
1916
+ },
1917
+ "255990": {
1918
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": false
1924
+ },
1925
+ "255991": {
1926
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": false
1932
+ },
1933
+ "255992": {
1934
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": false
1940
+ },
1941
+ "255993": {
1942
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": false
1948
+ },
1949
+ "255994": {
1950
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": false
1956
+ },
1957
+ "255995": {
1958
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": false
1964
+ },
1965
+ "255996": {
1966
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": false
1972
+ },
1973
+ "255997": {
1974
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": false
1980
+ },
1981
+ "255998": {
1982
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": false
1988
+ },
1989
+ "255999": {
1990
+ "content": "<unused99>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": false
1996
+ }
1997
+ },
1998
+ "additional_special_tokens": [
1999
+ "<start_of_turn>",
2000
+ "<end_of_turn>"
2001
+ ],
2002
+ "bos_token": "<bos>",
2003
+ "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
2004
+ "clean_up_tokenization_spaces": false,
2005
+ "eos_token": "<eos>",
2006
+ "model_max_length": 1000000000000000019884624838656,
2007
+ "pad_token": "<pad>",
2008
+ "sp_model_kwargs": {},
2009
+ "spaces_between_special_tokens": false,
2010
+ "tokenizer_class": "GemmaTokenizer",
2011
+ "unk_token": "<unk>",
2012
+ "use_default_system_prompt": false
2013
+ }