LLaMAntino-3-SLIMER-IT / training_configs.yml
andrewzamai's picture
Upload folder using huggingface_hub
de735d9 verified
# fine-tuning Llama-3-8b instruct version on PileNER with topNE NEs and N samples per NE (N positive + N negative)
#base_model: meta-llama/Meta-Llama-3-8B-Instruct
#base_model: meta-llama/Meta-Llama-3-8B
base_model: swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA
prompt_template_name: llama3_italian
# using dataset converted from MSEQA format to GenQA format (instruction, input, output) columns
data_path: None
val_data_path: None
select_train_portion: -1
val_set_size: -1 # if -1 use all validation data
output_dir: None
early_stopping_patience: 5
#training hyperparams
batch_size: 32
micro_batch_size: 1
num_epochs: 10
learning_rate: 3.0e-4
cutoff_len: 768
warmup_steps: 60
eval_steps: 20
logging_steps: 5
max_grad_norm: 1.0
#lora hyperparams
use_lora: True
lora_alpha: 16
lora_dropout: 0.05
lora_r: 8
lora_target_modules:
- q_proj
- v_proj
- k_proj
- v_proj
#llm hyperparams
# NTP loss only on Response
train_on_inputs: False
group_by_length: True
#quant params
load_8bit: False
load_4bit: False
#general param
save_total_limit: 2
use_flash_attention: False
shuffle: True
gradient_checkpointing: False