{ "cells": [ { "cell_type": "markdown", "id": "ea62ee81-8904-492e-a840-3664cf27e8fb", "metadata": {}, "source": [ "# Autoeval inference testing" ] }, { "cell_type": "code", "execution_count": null, "id": "fa3d9de4-4e59-468f-92f0-b5f2ec55858d", "metadata": {}, "outputs": [], "source": [ "from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM\n", "import torch\n", "import os\n", "\n", "try:\n", " from google.colab import userdata\n", " HF_TOKEN = userdata.get('HF_TOKEN')\n", " os.environ['HF_TOKEN'] = HF_TOKEN\n", "except:\n", " print(\"Not running in Google Colab, trying to get the HF_TOKEN from the environment\")\n", "\n", "\n", "if os.environ.get('HF_TOKEN') is None:\n", " raise ValueError(\"You must set the HF_TOKEN environment variable to use this script, you also need to have access to the Llama 3.2 model family\")\n", "\n", "hugging_face_model_id = \"eltorio/Llama-3.2-3B-appreciation\"\n", "base_model_path = \"meta-llama/Llama-3.2-3B-Instruct\"\n", "device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n" ] }, { "cell_type": "markdown", "id": "a7696fc5-7c8e-4c3c-a5e5-8b88dcdaa2de", "metadata": {}, "source": [ "## Load the model" ] }, { "cell_type": "code", "execution_count": 2, "id": "a0668894-d42e-4e56-8448-4b83af04b213", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1c7303ddd88143a99b18d04f0def5efc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Loading checkpoint shards: 0%| | 0/2 [00:00 str:\n", "\n", " if trimestre == \"1\":\n", " trimestre_full = \"premier trimestre\"\n", " user_question = f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_1} de moyenne, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n", " elif trimestre == \"2\":\n", " trimestre_full = \"deuxième trimestre\"\n", " user_question = f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_2} de moyenne ce trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n", " elif trimestre == \"3\":\n", " trimestre_full = \"troisième trimestre\"\n", " user_question= f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_3} de moyenne ce trimestre, {moyenne_2} au deuxième trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n", " messages = [\n", " {\n", " \"role\": \"system\",\n", " \"content\": \"Vous êtes une IA assistant les enseignants d'histoire-géographie en rédigeant à leur place une appréciation personnalisée pour leur élève en fonction de ses performances. Votre appreciation doit être en français, et doit aider l'élève à comprendre ses points forts et les axes d'amélioration. Votre appréciation doit comporter de 1 à 40 mots. Votre appréciation ne doit jamais comporter la valeur de la note. Votre appréciation doit utiliser le style impersonnel.Attention l'élément le plus important de votre analyse doit rester la moyenne du trimestre\"},\n", " {\n", " \"role\": \"user\",\n", " \"content\": user_question},\n", " ]\n", " return messages" ] }, { "cell_type": "code", "execution_count": 4, "id": "0874967f-ddcc-4b3f-9625-e934cff38d44", "metadata": {}, "outputs": [], "source": [ "messages = infere(\"1\", 3, float('nan'), float('nan'), 10, 10, 10)" ] }, { "cell_type": "markdown", "id": "2686f92a-2de6-420e-a36a-3581f4df3ed8", "metadata": {}, "source": [ "## Tokenize the input" ] }, { "cell_type": "code", "execution_count": 5, "id": "b58c8308-f5df-48d1-b872-2b539f1eef19", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[128000, 128006, 9125, 128007, 271, 38766, 1303, 33025, 2696,\n", " 25, 6790, 220, 2366, 18, 198, 15724, 2696, 25,\n", " 220, 1627, 5887, 220, 2366, 19, 271, 43273, 62299,\n", " 6316, 44190, 18328, 3625, 68061, 625, 1821, 294, 6,\n", " 90446, 2427, 978, 3257, 648, 665, 9517, 67, 7404,\n", " 519, 3869, 28130, 2035, 6316, 917, 43711, 5979, 367,\n", " 97252, 35965, 8047, 5019, 28130, 33013, 79351, 665, 34501,\n", " 409, 15907, 24601, 13, 650, 52262, 35996, 42182, 23761,\n", " 665, 55467, 11, 1880, 42182, 91878, 326, 6, 19010,\n", " 79351, 3869, 60946, 265, 15907, 3585, 75652, 1880, 3625,\n", " 25776, 294, 58591, 73511, 7769, 13, 650, 52262, 917,\n", " 43711, 5979, 367, 42182, 52962, 261, 409, 220, 16,\n", " 3869, 220, 1272, 78199, 13, 650, 52262, 917, 43711,\n", " 5979, 367, 841, 42182, 56316, 52962, 261, 1208, 51304,\n", " 409, 1208, 5296, 13, 650, 52262, 917, 43711, 5979,\n", " 367, 42182, 75144, 514, 1742, 60849, 8301, 47472, 3012,\n", " 326, 6, 29982, 479, 514, 5636, 3062, 409, 15265,\n", " 49586, 42182, 2800, 261, 1208, 52138, 26193, 3930, 75110,\n", " 265, 128009, 128006, 882, 128007, 271, 53, 89025, 9517,\n", " 67, 7420, 6316, 917, 43711, 5979, 367, 665, 40970,\n", " 409, 220, 1272, 78199, 5019, 514, 21134, 75110, 265,\n", " 5019, 42067, 33013, 79351, 7930, 264, 15925, 220, 18,\n", " 409, 52138, 26193, 11, 503, 34155, 4046, 26591, 978,\n", " 4538, 52962, 1133, 3869, 220, 605, 14, 605, 11,\n", " 829, 20852, 3869, 220, 605, 14, 605, 1880, 4538,\n", " 42775, 3869, 220, 605, 14, 605, 13, 11876, 8554,\n", " 841, 97569, 6502, 917, 5169, 66014, 7010, 326, 6,\n", " 391, 652, 978, 5979, 367, 13, 128009, 128006, 78191,\n", " 128007, 271]], device='cuda:0')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = tokenizer.apply_chat_template(\n", " messages,\n", " tokenize = True,\n", " add_generation_prompt = True,\n", " return_tensors = \"pt\",).to(device)\n", "inputs" ] }, { "cell_type": "markdown", "id": "49d35c86-4d5d-4aaa-8e49-6b6e7386d4d6", "metadata": {}, "source": [ "## Generate the output" ] }, { "cell_type": "code", "execution_count": 6, "id": "94723775-3774-4e5f-b9bb-53b6f16fb432", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n" ] }, { "data": { "text/plain": [ "\"Quel changement (positif) par rapport à l'an passé! X travaille plus sérieusement, il fait davantage d'effort, il participe. Son redoublement lui permettra d'avoir une deuxième année plus confortable. Continuer ainsi devrait payer au final.\"" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "outputs = model.generate(input_ids = inputs, \n", " max_new_tokens = 90, \n", " use_cache = True,\n", " temperature = 1.5,\n", " min_p = 0.1,\n", " pad_token_id=tokenizer.eos_token_id,)\n", "decoded_sequences = tokenizer.batch_decode(outputs[:, inputs.shape[1]:],skip_special_tokens=True)[0]\n", "decoded_sequences" ] }, { "cell_type": "code", "execution_count": null, "id": "5d1ba3fb-2e62-4486-9c45-3567d4d3a6f0", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }