--- license: apache-2.0 datasets: - Universal-NER/Pile-NER-type language: - en metrics: - f1 library_name: transformers pipeline_tag: text2text-generation ---

Rethinking Negative Instances for Generative Named Entity Recognition

# Model Card for GNER-T5-large We introduce GNER, a **G**enerative **N**amed **E**ntity **R**ecognition framework, which demonstrates enhanced zero-shot capabilities across unseen entity domains. Experiments on two representative generative models, i.e., LLaMA and Flan-T5, show that the integration of negative instances into the training process yields substantial performance enhancements. The resulting models, GNER-LLaMA and GNER-T5, outperform state-of-the-art (SoTA) approaches by a large margin, achieving improvements of 8 and 11 points in $F_1$ score, respectively. Code and models are publicly available. * ๐Ÿ’ป Code: [https://github.com/yyDing1/GNER/](https://github.com/yyDing1/GNER/) * ๐Ÿ“– Paper: [Rethinking Negative Instances for Generative Named Entity Recognition](https://arxiv.org/abs/2402.16602) * ๐Ÿ’พ Models in the ๐Ÿค— HuggingFace Hub: [GNER-Models](https://huggingface.co./collections/dyyyyyyyy/gner-65dda2cb96c6e35c814dea56) * ๐Ÿงช Reproduction Materials: [Reproduction Materials](https://drive.google.com/drive/folders/1m2FqDgItEbSoeUVo-i18AwMvBcNkZD46?usp=drive_link) * ๐ŸŽจ Example Jupyter Notebooks: [GNER Notebook](https://github.com/yyDing1/GNER/blob/main/notebook.ipynb)

## PreTrained Models We release five GNER models based on LLaMA (7B) and Flan-T5 (base, large, xl and xxl). | Model | # Params | Zero-shot Average $F_1$ | Supervised Average $F_1$ | ๐Ÿค— HuggingFace
Download Link | | ------------- | -------: | :----------------------: | :-----------------------: | :-------------------------------------------------: | | GNER-LLaMA | 7B | 66.1 | 86.09 | [link](https://huggingface.co./dyyyyyyyy/GNER-LLaMA-7B) | | GNER-T5-base | 248M | 59.5 | 83.21 | [link](https://huggingface.co./dyyyyyyyy/GNER-T5-base) | | GNER-T5-large | 783M | 63.5 | 85.45 | [link](https://huggingface.co./dyyyyyyyy/GNER-T5-large) | | GNER-T5-xl | 3B | 66.1 | 85.94 | [link](https://huggingface.co./dyyyyyyyy/GNER-T5-xl) | | GNER-T5-xxl | 11B | 69.1 | 86.15 | [link](https://huggingface.co./dyyyyyyyy/GNER-T5-xxl) | ## Demo usage You should install the dependencies: ```bash pip install torch datasets deepspeed accelerate transformers protobuf ``` Please check out [Example Jupyter Notebooks](https://github.com/yyDing1/GNER/blob/main/notebook.ipynb) for guidance on utilizing GNER models. A simple inference example is as follows: Below is an example using `GNER-T5` ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("dyyyyyyyy/GNER-T5-xxl") >>> model = AutoModelForSeq2SeqLM.from_pretrained("dyyyyyyyy/GNER-T5-xxl", torch_dtype=torch.bfloat16).cuda() >>> model = model.eval() >>> instruction_template = "Please analyze the sentence provided, identifying the type of entity for each word on a token-by-token basis.\nOutput format is: word_1(label_1), word_2(label_2), ...\nWe'll use the BIO-format to label the entities, where:\n1. B- (Begin) indicates the start of a named entity.\n2. I- (Inside) is used for words within a named entity but are not the first word.\n3. O (Outside) denotes words that are not part of a named entity.\n" >>> sentence = "did george clooney make a musical in the 1980s" >>> entity_labels = ["genre", "rating", "review", "plot", "song", "average ratings", "director", "character", "trailer", "year", "actor", "title"] >>> instruction = f"{instruction_template}\nUse the specific entity tags: {', '.join(entity_labels)} and O.\nSentence: {sentence}" >>> inputs = tokenizer(instruction, return_tensors="pt").to("cuda") >>> outputs = model.generate(**inputs, max_new_tokens=640) >>> response = tokenizer.decode(outputs[0], skip_special_tokens=True) >>> print(response) "did(O) george(B-actor) clooney(I-actor) make(O) a(O) musical(B-genre) in(O) the(O) 1980s(B-year)" ``` ## Citation ```bibtex @misc{ding2024rethinking, title={Rethinking Negative Instances for Generative Named Entity Recognition}, author={Yuyang Ding and Juntao Li and Pinzheng Wang and Zecheng Tang and Bowen Yan and Min Zhang}, year={2024}, eprint={2402.16602}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```