--- license: apache-2.0 library_name: transformers tags: - generated_from_trainer base_model: google/gemma-2b model-index: - name: out1v results: [] pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # use google/gemma-7b if you have access base_model: google/gemma-2b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer #lora_model_dir: load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: ./python-oasst/cleaned-dataset.jsonl type: oasst val_set_size: 0.20 output_dir: ./out1v adapter: lora lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true gptq: false sequence_len: 4096 sample_packing: false pad_to_sequence_len: true wandb_project: gemma-2b-it wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# out1v This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1045 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.9865 | 0.0 | 1 | 2.2808 | | 1.1033 | 0.25 | 2613 | 1.1338 | | 1.0035 | 0.5 | 5226 | 1.1308 | | 1.0089 | 0.75 | 7839 | 1.1272 | | 0.9816 | 1.0 | 10452 | 1.1238 | | 0.8727 | 1.25 | 13065 | 1.1270 | | 0.9951 | 1.5 | 15678 | 1.1254 | | 1.01 | 1.75 | 18291 | 1.1242 | | 1.0677 | 2.0 | 20904 | 1.1243 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0