Text2Text Generation
Transformers
PyTorch
Indonesian
mt5
Inference Endpoints
File size: 4,474 Bytes
8f56ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

language: id
datasets:
- unicamp-dl/mmarco
widget:
- text: "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar."

license: apache-2.0
---


# doc2query/msmarco-indonesian-mt5-base-v1

This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).

It can be used for:
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini.
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.

## Usage
```python

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

import torch



model_name = 'doc2query/msmarco-indonesian-mt5-base-v1'

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name)



text = "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar."





def create_queries(para):

    input_ids = tokenizer.encode(para, return_tensors='pt')

    with torch.no_grad():

        # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality

        sampling_outputs = model.generate(

            input_ids=input_ids,

            max_length=64,

            do_sample=True,

            top_p=0.95,

            top_k=10, 

            num_return_sequences=5

            )

        

        # Here we use Beam-search. It generates better quality queries, but with less diversity

        beam_outputs = model.generate(

            input_ids=input_ids, 

            max_length=64, 

            num_beams=5, 

            no_repeat_ngram_size=2, 

            num_return_sequences=5, 

            early_stopping=True

        )





    print("Paragraph:")

    print(para)

    

    print("\nBeam Outputs:")

    for i in range(len(beam_outputs)):

        query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)

        print(f'{i + 1}: {query}')



    print("\nSampling Outputs:")

    for i in range(len(sampling_outputs)):

        query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True)

        print(f'{i + 1}: {query}')



create_queries(text)



```

**Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it.

## Training
This model fine-tuned [google/mt5-base](https://huggingface.co./google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the  training script, see the `train_script.py` in this repository.

The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. 

This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).