devasheeshG
commited on
Commit
•
b289b78
1
Parent(s):
0838193
Upload 2 files
Browse files- README.md +344 -0
- __init__.py +125 -0
README.md
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: automatic-speech-recognition
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- audio
|
7 |
+
- speech
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- whisper
|
10 |
+
- wav2vec2
|
11 |
+
|
12 |
+
model-index:
|
13 |
+
- name: whisper_large_v2_fp16_transformers
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
dataset:
|
19 |
+
type: librispeech_asr
|
20 |
+
name: LibriSpeech (clean)
|
21 |
+
config: clean
|
22 |
+
split: test
|
23 |
+
args:
|
24 |
+
language: en
|
25 |
+
metrics:
|
26 |
+
- type: wer
|
27 |
+
value: 0
|
28 |
+
name: Test WER
|
29 |
+
description: Word Error Rate
|
30 |
+
- type: mer
|
31 |
+
value: 0
|
32 |
+
name: Test MER
|
33 |
+
description: Match Error Rate
|
34 |
+
- type: wil
|
35 |
+
value: 0
|
36 |
+
name: Test WIL
|
37 |
+
description: Word Information Lost
|
38 |
+
- type: wip
|
39 |
+
value: 0
|
40 |
+
name: Test WIP
|
41 |
+
description: Word Information Preserved
|
42 |
+
- type: cer
|
43 |
+
value: 0
|
44 |
+
name: Test CER
|
45 |
+
description: Character Error Rate
|
46 |
+
|
47 |
+
- task:
|
48 |
+
type: automatic-speech-recognition
|
49 |
+
name: Automatic Speech Recognition
|
50 |
+
dataset:
|
51 |
+
type: librispeech_asr
|
52 |
+
name: LibriSpeech (other)
|
53 |
+
config: other
|
54 |
+
split: test
|
55 |
+
args:
|
56 |
+
language: en
|
57 |
+
metrics:
|
58 |
+
- type: wer
|
59 |
+
value: 0
|
60 |
+
name: Test WER
|
61 |
+
description: Word Error Rate
|
62 |
+
- type: mer
|
63 |
+
value: 0
|
64 |
+
name: Test MER
|
65 |
+
description: Match Error Rate
|
66 |
+
- type: wil
|
67 |
+
value: 0
|
68 |
+
name: Test WIL
|
69 |
+
description: Word Information Lost
|
70 |
+
- type: wip
|
71 |
+
value: 0
|
72 |
+
name: Test WIP
|
73 |
+
description: Word Information Preserved
|
74 |
+
- type: cer
|
75 |
+
value: 0
|
76 |
+
name: Test CER
|
77 |
+
description: Character Error Rate
|
78 |
+
|
79 |
+
- task:
|
80 |
+
type: automatic-speech-recognition
|
81 |
+
name: Automatic Speech Recognition
|
82 |
+
dataset:
|
83 |
+
type: mozilla-foundation/common_voice_14_0
|
84 |
+
name: Common Voice (14.0) (Hindi)
|
85 |
+
config: hi
|
86 |
+
split: test
|
87 |
+
args:
|
88 |
+
language: hi
|
89 |
+
metrics:
|
90 |
+
- type: wer
|
91 |
+
value: 44.64
|
92 |
+
name: Test WER
|
93 |
+
description: Word Error Rate
|
94 |
+
- type: mer
|
95 |
+
value: 41.69
|
96 |
+
name: Test MER
|
97 |
+
description: Match Error Rate
|
98 |
+
- type: wil
|
99 |
+
value: 59.53
|
100 |
+
name: Test WIL
|
101 |
+
description: Word Information Lost
|
102 |
+
- type: wip
|
103 |
+
value: 40.46
|
104 |
+
name: Test WIP
|
105 |
+
description: Word Information Preserved
|
106 |
+
- type: cer
|
107 |
+
value: 16.80
|
108 |
+
name: Test CER
|
109 |
+
description: Character Error Rate
|
110 |
+
|
111 |
+
widget:
|
112 |
+
- example_title: Hinglish Sample
|
113 |
+
src: https://huggingface.co/devasheeshG/whisper_large_v2_fp16_transformers/resolve/main/test.wav
|
114 |
+
- example_title: Librispeech sample 1
|
115 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
116 |
+
- example_title: Librispeech sample 2
|
117 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
118 |
+
|
119 |
+
language:
|
120 |
+
- en
|
121 |
+
- zh
|
122 |
+
- de
|
123 |
+
- es
|
124 |
+
- ru
|
125 |
+
- ko
|
126 |
+
- fr
|
127 |
+
- ja
|
128 |
+
- pt
|
129 |
+
- tr
|
130 |
+
- pl
|
131 |
+
- ca
|
132 |
+
- nl
|
133 |
+
- ar
|
134 |
+
- sv
|
135 |
+
- it
|
136 |
+
- id
|
137 |
+
- hi
|
138 |
+
- fi
|
139 |
+
- vi
|
140 |
+
- he
|
141 |
+
- uk
|
142 |
+
- el
|
143 |
+
- ms
|
144 |
+
- cs
|
145 |
+
- ro
|
146 |
+
- da
|
147 |
+
- hu
|
148 |
+
- ta
|
149 |
+
- "no"
|
150 |
+
- th
|
151 |
+
- ur
|
152 |
+
- hr
|
153 |
+
- bg
|
154 |
+
- lt
|
155 |
+
- la
|
156 |
+
- mi
|
157 |
+
- ml
|
158 |
+
- cy
|
159 |
+
- sk
|
160 |
+
- te
|
161 |
+
- fa
|
162 |
+
- lv
|
163 |
+
- bn
|
164 |
+
- sr
|
165 |
+
- az
|
166 |
+
- sl
|
167 |
+
- kn
|
168 |
+
- et
|
169 |
+
- mk
|
170 |
+
- br
|
171 |
+
- eu
|
172 |
+
- is
|
173 |
+
- hy
|
174 |
+
- ne
|
175 |
+
- mn
|
176 |
+
- bs
|
177 |
+
- kk
|
178 |
+
- sq
|
179 |
+
- sw
|
180 |
+
- gl
|
181 |
+
- mr
|
182 |
+
- pa
|
183 |
+
- si
|
184 |
+
- km
|
185 |
+
- sn
|
186 |
+
- yo
|
187 |
+
- so
|
188 |
+
- af
|
189 |
+
- oc
|
190 |
+
- ka
|
191 |
+
- be
|
192 |
+
- tg
|
193 |
+
- sd
|
194 |
+
- gu
|
195 |
+
- am
|
196 |
+
- yi
|
197 |
+
- lo
|
198 |
+
- uz
|
199 |
+
- fo
|
200 |
+
- ht
|
201 |
+
- ps
|
202 |
+
- tk
|
203 |
+
- nn
|
204 |
+
- mt
|
205 |
+
- sa
|
206 |
+
- lb
|
207 |
+
- my
|
208 |
+
- bo
|
209 |
+
- tl
|
210 |
+
- mg
|
211 |
+
- as
|
212 |
+
- tt
|
213 |
+
- haw
|
214 |
+
- ln
|
215 |
+
- ha
|
216 |
+
- ba
|
217 |
+
- jw
|
218 |
+
- su
|
219 |
+
---
|
220 |
+
## Versions:
|
221 |
+
|
222 |
+
- CUDA: 12.1
|
223 |
+
- cuDNN Version: 8.9.2.26_1.0-1_amd64
|
224 |
+
|
225 |
+
* tensorflow Version: 2.12.0
|
226 |
+
* torch Version: 2.1.0.dev20230606+cu12135
|
227 |
+
* transformers Version: 4.30.2
|
228 |
+
* accelerate Version: 0.20.3
|
229 |
+
|
230 |
+
## Model Benchmarks:
|
231 |
+
|
232 |
+
- RAM: 3 GB (Original_Model: 6GB)
|
233 |
+
- VRAM: 3.7 GB (Original_Model: 11GB)
|
234 |
+
- test.wav: 23 s (Multilingual Speech i.e. English+Hindi)
|
235 |
+
|
236 |
+
- **Time in seconds for Processing by each device**
|
237 |
+
|
238 |
+
| Device Name | float32 (Original) | float16 | CudaCores | TensorCores |
|
239 |
+
| ----------------- | ------------------ | ------- | --------- | ----------- |
|
240 |
+
| 3060 | 2.2 | 1.3 | 3,584 | 112 |
|
241 |
+
| 1660 Super | OOM | 6 | 1,408 | N/A |
|
242 |
+
| Collab (Tesla T4) | - | - | 2,560 | 320 |
|
243 |
+
| Collab (CPU) | - | N/A | N/A | N/A |
|
244 |
+
| M1 (CPU) | - | - | N/A | N/A |
|
245 |
+
| M1 (GPU -> 'mps') | - | - | N/A | N/A |
|
246 |
+
|
247 |
+
|
248 |
+
- **NOTE: TensorCores are efficient in mixed-precision calculations**
|
249 |
+
- **CPU -> torch.float16 not supported on CPU (AMD Ryzen 5 3600 or Collab CPU)**
|
250 |
+
- Punchuation: Sometimes False ('I don't know the exact reason why this is happening')
|
251 |
+
|
252 |
+
## Model Error Benchmarks:
|
253 |
+
|
254 |
+
- **WER: Word Error Rate**
|
255 |
+
- **MER: Match Error Rate**
|
256 |
+
- **WIL: Word Information Lost**
|
257 |
+
- **WIP: Word Information Preserved**
|
258 |
+
- **CER: Character Error Rate**
|
259 |
+
|
260 |
+
### Hindi to Hindi (test.tsv) [Common Voice 14.0](https://commonvoice.mozilla.org/en/datasets)
|
261 |
+
|
262 |
+
**Test done on RTX 3060 on 1000 Samples**
|
263 |
+
|
264 |
+
| | WER | MER | WIL | WIP | CER |
|
265 |
+
| ----------------------- | ----- | ----- | ----- | ----- | ----- |
|
266 |
+
| Original_Model (30 min) | 43.99 | 41.65 | 59.47 | 40.52 | 16.23 |
|
267 |
+
| This_Model (20 min) | 44.64 | 41.69 | 59.53 | 40.46 | 16.80 |
|
268 |
+
|
269 |
+
### Hindi to English (test.csv) [Custom Dataset](https://huggingface.co/datasets/devasheeshG/common_voices_14_0_hi2en_hi2hi)
|
270 |
+
|
271 |
+
**Test done on RTX 3060 on 1000 Samples**
|
272 |
+
|
273 |
+
| | WER | MER | WIL | WIP | CER |
|
274 |
+
| ----------------------- | --- | --- | --- | --- | --- |
|
275 |
+
| Original_Model (30 min) | - | - | - | - | - |
|
276 |
+
| This_Model (20 min) | - | - | - | - | - |
|
277 |
+
|
278 |
+
### English ([LibriSpeech](https://huggingface.co/datasets/librispeech_asr) -> test-clean)
|
279 |
+
|
280 |
+
**Test done on RTX 3060 on \_\_\_ Samples**
|
281 |
+
|
282 |
+
| | WER | MER | WIL | WIP | CER |
|
283 |
+
| -------------- | --- | --- | --- | --- | --- |
|
284 |
+
| Original_Model | - | - | - | - | - |
|
285 |
+
| This_Model | - | - | - | - | - |
|
286 |
+
|
287 |
+
### English ([LibriSpeech](https://huggingface.co/datasets/librispeech_asr) -> test-other)
|
288 |
+
|
289 |
+
**Test done on RTX 3060 on \_\_\_ Samples**
|
290 |
+
|
291 |
+
| | WER | MER | WIL | WIP | CER |
|
292 |
+
| -------------- | --- | --- | --- | --- | --- |
|
293 |
+
| Original_Model | - | - | - | - | - |
|
294 |
+
| This_Model | - | - | - | - | - |
|
295 |
+
|
296 |
+
- **'jiwer' library is used for calculations**
|
297 |
+
|
298 |
+
## Code for conversion:
|
299 |
+
|
300 |
+
- ### [Will be soon Uploaded on Github](https://github.com/devasheeshG)
|
301 |
+
|
302 |
+
## Usage
|
303 |
+
|
304 |
+
A file `__init__.py` is contained inside this repo which contains all the code to use this model.
|
305 |
+
|
306 |
+
Firstly, clone this repo and place all the files inside a folder.
|
307 |
+
|
308 |
+
### Make sure you have git-lfs installed (https://git-lfs.com)
|
309 |
+
|
310 |
+
```bash
|
311 |
+
git lfs install
|
312 |
+
git clone https://huggingface.co/devasheeshG/whisper_large_v2_fp16_transformers
|
313 |
+
```
|
314 |
+
|
315 |
+
**Please try in jupyter notebook**
|
316 |
+
|
317 |
+
```python
|
318 |
+
# Import the Model
|
319 |
+
from whisper_large_v2_fp16_transformers import Model, load_audio, pad_or_trim
|
320 |
+
```
|
321 |
+
|
322 |
+
```python
|
323 |
+
# Initilise the model
|
324 |
+
model = Model(
|
325 |
+
model_name_or_path='whisper_large_v2_fp16_transformers',
|
326 |
+
cuda_visible_device="0",
|
327 |
+
device='cuda',
|
328 |
+
)
|
329 |
+
```
|
330 |
+
|
331 |
+
```python
|
332 |
+
# Load Audio
|
333 |
+
audio = load_audio('whisper_large_v2_fp16_transformers/test.wav')
|
334 |
+
audio = pad_or_trim(audio)
|
335 |
+
```
|
336 |
+
|
337 |
+
```python
|
338 |
+
# Transcribe (First transcription takes time)
|
339 |
+
model.transcribe(audio)
|
340 |
+
```
|
341 |
+
|
342 |
+
## Credits
|
343 |
+
|
344 |
+
It is fp16 version of ``openai/whisper-large-v2``
|
__init__.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
WhisperForConditionalGeneration,
|
3 |
+
WhisperProcessor,
|
4 |
+
WhisperConfig,
|
5 |
+
)
|
6 |
+
import torch
|
7 |
+
import ffmpeg
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import numpy as np
|
11 |
+
import os
|
12 |
+
|
13 |
+
# load_audio and pad_or_trim functions
|
14 |
+
SAMPLE_RATE = 16000
|
15 |
+
CHUNK_LENGTH = 30 # 30-second chunks
|
16 |
+
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
17 |
+
|
18 |
+
|
19 |
+
# audio = whisper.load_audio('test.wav')
|
20 |
+
def load_audio(file: str, sr: int = SAMPLE_RATE, start_time: int = 0, dtype=np.float16):
|
21 |
+
"""
|
22 |
+
Load an audio file into a numpy array at the specified sampling rate.
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
26 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
27 |
+
out, _ = (
|
28 |
+
ffmpeg.input(file, ss=start_time, threads=0)
|
29 |
+
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
30 |
+
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
31 |
+
)
|
32 |
+
except ffmpeg.Error as e:
|
33 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
34 |
+
|
35 |
+
# return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
36 |
+
return np.frombuffer(out, np.int16).flatten().astype(dtype) / 32768.0
|
37 |
+
|
38 |
+
|
39 |
+
# audio = whisper.pad_or_trim(audio)
|
40 |
+
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
41 |
+
"""
|
42 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
43 |
+
"""
|
44 |
+
if torch.is_tensor(array):
|
45 |
+
if array.shape[axis] > length:
|
46 |
+
array = array.index_select(
|
47 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
48 |
+
)
|
49 |
+
|
50 |
+
if array.shape[axis] < length:
|
51 |
+
pad_widths = [(0, 0)] * array.ndim
|
52 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
53 |
+
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
54 |
+
else:
|
55 |
+
if array.shape[axis] > length:
|
56 |
+
array = array.take(indices=range(length), axis=axis)
|
57 |
+
|
58 |
+
if array.shape[axis] < length:
|
59 |
+
pad_widths = [(0, 0)] * array.ndim
|
60 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
61 |
+
array = np.pad(array, pad_widths)
|
62 |
+
|
63 |
+
return array
|
64 |
+
|
65 |
+
|
66 |
+
class Model:
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
model_name_or_path: str,
|
70 |
+
cuda_visible_device: str = "0",
|
71 |
+
device: str = "cuda", # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
72 |
+
):
|
73 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_device
|
74 |
+
self.DEVICE = device
|
75 |
+
|
76 |
+
self.processor = WhisperProcessor.from_pretrained(model_name_or_path)
|
77 |
+
self.tokenizer = self.processor.tokenizer
|
78 |
+
|
79 |
+
self.config = WhisperConfig.from_pretrained(model_name_or_path)
|
80 |
+
|
81 |
+
self.model = WhisperForConditionalGeneration(
|
82 |
+
config=self.config
|
83 |
+
).from_pretrained(
|
84 |
+
pretrained_model_name_or_path=model_name_or_path,
|
85 |
+
torch_dtype=self.config.torch_dtype,
|
86 |
+
# device_map=DEVICE, # 'balanced', 'balanced_low_0', 'sequential', 'cuda', 'cpu'
|
87 |
+
low_cpu_mem_usage=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
# Move model to GPU
|
91 |
+
if self.model.device.type != self.DEVICE:
|
92 |
+
print(f"Moving model to {self.DEVICE}")
|
93 |
+
self.model = self.model.to(self.DEVICE)
|
94 |
+
self.model.eval()
|
95 |
+
|
96 |
+
else:
|
97 |
+
print(f"Model is already on {self.DEVICE}")
|
98 |
+
self.model.eval()
|
99 |
+
|
100 |
+
print("dtype of model acc to config: ", self.config.torch_dtype)
|
101 |
+
print("dtype of loaded model: ", self.model.dtype)
|
102 |
+
|
103 |
+
def transcribe(
|
104 |
+
self, audio, language: str = "english", skip_special_tokens: bool = True
|
105 |
+
) -> str:
|
106 |
+
input_features = (
|
107 |
+
self.processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt")
|
108 |
+
.input_features.half()
|
109 |
+
.to(self.DEVICE)
|
110 |
+
)
|
111 |
+
with torch.no_grad():
|
112 |
+
predicted_ids = self.model.generate(
|
113 |
+
input_features,
|
114 |
+
num_beams=1,
|
115 |
+
language=language,
|
116 |
+
task="transcribe",
|
117 |
+
use_cache=True,
|
118 |
+
is_multilingual=True,
|
119 |
+
return_timestamps=True,
|
120 |
+
)
|
121 |
+
|
122 |
+
transcription = self.tokenizer.batch_decode(
|
123 |
+
predicted_ids, skip_special_tokens=skip_special_tokens
|
124 |
+
)[0]
|
125 |
+
return transcription.strip()
|