# DeepSeek-V3 Weight File Documentation ## New Fields in `config.json` - **model_type**: Specifies the model type, which is updated to `deepseek_v3` in this release. - **num_nextn_predict_layers**: Indicates the number of Multi-Token Prediction (MTP) Modules. The open-sourced V3 weights include **1 MTP Module** . - **quantization_config**: Describes the configuration for FP8 quantization. --- ## Weight Structure Overview The DeepSeek-V3 weight file consists of two main components: **Main Model Weights** and **MTP Modules**. ### 1. Main Model Weights - **Composition**: - Input/output embedding layers and a complete set of 61 Transformer hidden layers. - **Parameter Count**: - Total parameters: **671B** - Activation parameters: **36.6B** (including 0.9B for the output Head). #### Structural Details - **Embedding Layer**: - `model.embed_tokens.weight` - **Transformer Hidden Layers**: - `model.layers.0` to `model.layers.60`, totaling `num_hidden_layers` layers. - **Output Layer**: - `model.norm.weight` - `lm_head.weight` ### 2. Multi-Token Prediction (MTP) Modules - **Composition**: - Additional MTP Modules defined by the `num_nextn_predict_layers` field. In this model, the value is set to 1. - **Parameter Count**: - Parameters: **11.5B unique parameters** (excluding the shared 0.9B Embedding and 0.9B output Head). - Activation parameters: **1.5B** (including 0.9B for the output Head). #### Structural Details - **embed_tokens**: **Shares parameters** with the Embedding layer of the Main Model weights. - **enorm & hnorm**: RMSNorm parameters required for speculative decoding. - **eh_proj**: Parameters for dimensionality reduction projection on the norm results. - **Additional Transformer Hidden Layer**: - `model.layers.61.self_attn & mlp` (structure identical to the Main Model hidden layers). - **shared_head**: **Shares parameters** with the output Head of the Main Model weights. --- ### Loading Rules - **Main Model Weights**: Loaded via the `num_hidden_layers` parameter in `config.json`. - **MTP Modules**: Loaded via the `num_nextn_predict_layers` parameter, with layer IDs appended immediately after the Main Model hidden layers. For example: - If `num_hidden_layers = 61` and `num_nextn_predict_layers = 1`, the MTP Module's layer ID is `61`. --- ## FP8 Weight Documentation DeepSeek-V3 natively supports FP8 weight format with 128x128 block scaling. ### FP8 Configuration The FP8 weight file introduces a `quantization_config` field to describe the quantization method. Below is an example configuration: ```json "quantization_config": { "activation_scheme": "dynamic", "fmt": "e4m3", "quant_method": "fp8", "weight_block_size": [128, 128] } ``` - **Quantization Format**: - Format type: `fp8` and `e4m3` (corresponding to `torch.float8_e4m3fn`). - Weight block size: `128x128`. - **Activation Quantization Scheme**: - Utilizes dynamic activation quantization (`dynamic`). ### Dequantization Method The FP8 weight file includes a `weight_scale_inv` field, which stores the dequantization scale for each weight block. - **Storage Format**: `float32 Tensor`, stored alongside the weight data. - **Dequantization Formula**: - If the weight block is not aligned to 128, it is zero-padded to 128 before calculating the scale. After quantization, the padded portion is removed. - The dequantization process is performed as: `(128x128 weight block) * weight_scale_inv`. Through dequantization of the FP8 weights, runtime operations enable online quantization at a granularity of `per-token-per-128-channel`. ---